81,011 research outputs found

    Six Key Enablers for Machine Type Communication in 6G

    Full text link
    While 5G is being rolled out in different parts of the globe, few research groups around the world - such as the Finnish 6G Flagship program - have already started posing the question: \textit{What will 6G be?} The 6G vision is a data-driven society, enabled by near instant unlimited wireless connectivity. Driven by impetus to provide vertical-specific wireless network solutions, machine type communication encompassing both its mission critical and massive connectivity aspects is foreseen to be an important cornerstone of 6G development. This article presents an over-arching vision for machine type communication in 6G. In this regard, some relevant performance indicators are first anticipated, followed by a presentation of six key enabling technologies.Comment: 14 pages, five figures, submitted to IEEE Communications Magazine for possible publicatio

    Machine Intelligence Techniques for Next-Generation Context-Aware Wireless Networks

    Full text link
    The next generation wireless networks (i.e. 5G and beyond), which would be extremely dynamic and complex due to the ultra-dense deployment of heterogeneous networks (HetNets), poses many critical challenges for network planning, operation, management and troubleshooting. At the same time, generation and consumption of wireless data are becoming increasingly distributed with ongoing paradigm shift from people-centric to machine-oriented communications, making the operation of future wireless networks even more complex. In mitigating the complexity of future network operation, new approaches of intelligently utilizing distributed computational resources with improved context-awareness becomes extremely important. In this regard, the emerging fog (edge) computing architecture aiming to distribute computing, storage, control, communication, and networking functions closer to end users, have a great potential for enabling efficient operation of future wireless networks. These promising architectures make the adoption of artificial intelligence (AI) principles which incorporate learning, reasoning and decision-making mechanism, as natural choices for designing a tightly integrated network. Towards this end, this article provides a comprehensive survey on the utilization of AI integrating machine learning, data analytics and natural language processing (NLP) techniques for enhancing the efficiency of wireless network operation. In particular, we provide comprehensive discussion on the utilization of these techniques for efficient data acquisition, knowledge discovery, network planning, operation and management of the next generation wireless networks. A brief case study utilizing the AI techniques for this network has also been provided.Comment: ITU Special Issue N.1 The impact of Artificial Intelligence (AI) on communication networks and services, (To appear

    Generalized Sparse and Low-Rank Optimization for Ultra-Dense Networks

    Full text link
    Ultra-dense network (UDN) is a promising technology to further evolve wireless networks and meet the diverse performance requirements of 5G networks. With abundant access points, each with communication, computation and storage resources, UDN brings unprecedented benefits, including significant improvement in network spectral efficiency and energy efficiency, greatly reduced latency to enable novel mobile applications, and the capability of providing massive access for Internet of Things (IoT) devices. However, such great promises come with formidable research challenges. To design and operate such complex networks with various types of resources, efficient and innovative methodologies will be needed. This motivates the recent introduction of highly structured and generalizable models for network optimization. In this article, we present some recently proposed large-scale sparse and low-rank frameworks for optimizing UDNs, supported by various motivating applications. A special attention is paid on algorithmic approaches to deal with nonconvex objective functions and constraints, as well as computational scalability.Comment: This paper has been accepted by IEEE Communication Magazine, Special Issue on Heterogeneous Ultra Dense Network

    Design and Synthesis of Ultra Low Energy Spin-Memristor Threshold Logic

    Full text link
    A threshold logic gate (TLG) performs weighted sum of multiple inputs and compares the sum with a threshold. We propose Spin-Memeristor Threshold Logic (SMTL) gates, which employ memristive cross-bar array (MCA) to perform current-mode summation of binary inputs, whereas, the low-voltage fast-switching spintronic threshold devices (STD) carry out the threshold operation in an energy efficient manner. Field programmable SMTL gate arrays can operate at a small terminal voltage of ~50mV, resulting in ultra-low power consumption in gates as well as programmable interconnect networks. We evaluate the performance of SMTL using threshold logic synthesis. Results for common benchmarks show that SMTL based programmable logic hardware can be more than 100x energy efficient than state of the art CMOS FPGA.Comment: this paper is submitted to IEEE Transactions on Nanotechnology. It is currently under revie

    A Survey on Low Latency Towards 5G: RAN, Core Network and Caching Solutions

    Full text link
    The fifth generation (5G) wireless network technology is to be standardized by 2020, where main goals are to improve capacity, reliability, and energy efficiency, while reducing latency and massively increasing connection density. An integral part of 5G is the capability to transmit touch perception type real-time communication empowered by applicable robotics and haptics equipment at the network edge. In this regard, we need drastic changes in network architecture including core and radio access network (RAN) for achieving end-to-end latency on the order of 1 ms. In this paper, we present a detailed survey on the emerging technologies to achieve low latency communications considering three different solution domains: RAN, core network, and caching. We also present a general overview of 5G cellular networks composed of software defined network (SDN), network function virtualization (NFV), caching, and mobile edge computing (MEC) capable of meeting latency and other 5G requirements.Comment: Accepted in IEEE Communications Surveys and Tutorial

    6G: The Next Frontier

    Full text link
    The current development of 5G networks represents a breakthrough in the design of communication networks, for its ability to provide a single platform enabling a variety of different services, from enhanced mobile broadband communications, automated driving, Internet-of-Things, with its huge number of connected devices, etc. Nevertheless, looking at the current development of technologies and new services, it is already possible to envision the need to move beyond 5G with a new architecture incorporating new services and technologies. The goal of this paper is to motivate the need to move to a sixth generation (6G) of mobile communication networks, starting from a gap analysis of 5G, and predicting a new synthesis of near future services, like hologram interfaces, ambient sensing intelligence, a pervasive introduction of artificial intelligence and the incorporation of technologies, like TeraHertz (THz) or Visible Light Communications (VLC), 3-dimensional coverage.Comment: This paper was submitted to IEEE Vehicular Technologies Magazine on the 7th of January 201

    Low Power Wide Area Networks: An Overview

    Full text link
    Low Power Wide Area (LPWA) networks are attracting a lot of attention primarily because of their ability to offer affordable connectivity to the low-power devices distributed over very large geographical areas. In realizing the vision of the Internet of Things (IoT), LPWA technologies complement and sometimes supersede the conventional cellular and short range wireless technologies in performance for various emerging smart city and machine-to-machine (M2M) applications. This review paper presents the design goals and the techniques, which different LPWA technologies exploit to offer wide-area coverage to low-power devices at the expense of low data rates. We survey several emerging LPWA technologies and the standardization activities carried out by different standards development organizations (e.g., IEEE, IETF, 3GPP, ETSI) as well as the industrial consortia built around individual LPWA technologies (e.g., LORa Alliance,WEIGHTLESS-SIG, and DASH7 Alliance). We further note that LPWA technologies adopt similar approaches, thus sharing similar limitations and challenges. This paper expands on these research challenges and identifies potential directions to address them. While the proprietary LPWA technologies are already hitting the market with large nationwide roll-outs, this paper encourages an active engagement of the research community in solving problems that will shape the connectivity of tens of billions of devices in the next decade.Comment: \c{opyright} 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Ultra-Reliable Low Latency Cellular Networks: Use Cases, Challenges and Approaches

    Full text link
    The fifth-generation cellular mobile networks are expected to support mission critical ultra-reliable low latency communication (URLLC) services in addition to the enhanced mobile broadband applications. This article first introduces three emerging mission critical applications of URLLC and identifies their requirements on end-to-end latency and reliability. We then investigate the various sources of end-to-end delay of current wireless networks by taking the 4G Long Term Evolution (LTE) as an example. Subsequently, we propose and evaluate several techniques to reduce the end-to-end latency from the perspectives of error control coding, signal processing, and radio resource management. We also briefly discuss other network design approaches with the potential for further latency reduction.Comment: Accepted to appear in IEEE Communications Magazin

    Computing and Communications for the Software-Defined Metamaterial Paradigm: A Context Analysis

    Full text link
    Metamaterials are artificial structures which have recently enabled the realization of novel electromagnetic components with engineered and even unnatural functionalities. Existing metamaterials are specifically designed for a single application working under preset conditions (e.g. electromagnetic cloaking for a fixed angle of incidence) and cannot be reused. Software-Defined Metamaterials (SDMs) are a much sought-after paradigm shift, exhibiting electromagnetic properties that can be reconfigured at runtime using a set of software primitives. To enable this new technology, SDMs require the integration of a network of controllers within the structure of the metamaterial, where each controller interacts locally and communicates globally to obtain the programmed behavior. The design approach for such controllers and the interconnection network, however, remains unclear due to the unique combination of constraints and requirements of the scenario. To bridge this gap, this paper aims to provide a context analysis from the computation and communication perspectives. Then, analogies are drawn between the SDM scenario and other applications both at the micro and nano scales, identifying possible candidates for the implementation of the controllers and the intra-SDM network. Finally, the main challenges of SDMs related to computing and communications are outlined

    Ultra-low Energy, High Performance and Programmable Magnetic Threshold Logic

    Full text link
    We propose magnetic threshold-logic (MTL) design based on non-volatile spin-torque switches. A threshold logic gate (TLG) performs summation of multiple inputs multiplied by a fixed set of weights and compares the sum with a threshold. MTL employs resistive states of magnetic tunnel junctions as programmable input weights, while, a low-voltage domain-wall shift based spin-torque switch is used for thresholding operation. The resulting MTL gate acts as a low-power, configurable logic unit and can be used to build fully pipelined, high-performance programmable computing blocks. Multiple stages in such a MTL design can be connected using energy-efficient ultralow swing programmable interconnect networks based on resistive switches. Owing to memory-based compact logic and interconnect design and low-voltage, high-speed spintorque based threshold operation, MTL can achieve more than two orders of magnitude improvement in energy-delay product as compared to look-up table based CMOS FPGA
    corecore