1,109 research outputs found

    A hybrid metal/semiconductor electron pump for quantum metrology

    Full text link
    Electron pumps capable of delivering a current higher than 100pA with sufficient accuracy are likely to become the direct mise en pratique of the possible new quantum definition of the ampere. Furthermore, they are essential for closing the quantum metrological triangle experiment which tests for possible corrections to the quantum relations linking e and h, the electron charge and the Planck constant, to voltage, resistance and current. We present here single-island hybrid metal/semiconductor transistor pumps which combine the simplicity and efficiency of Coulomb blockade in metals with the unsurpassed performances of silicon switches. Robust and simple pumping at 650MHz and 0.5K is demonstrated. The pumped current obtained over a voltage bias range of 1.4mV corresponds to a relative deviation of 5e-4 from the calculated value, well within the 1.5e-3 uncertainty of the measurement setup. Multi-charge pumping can be performed. The simple design fully integrated in an industrial CMOS process makes it an ideal candidate for national measurement institutes to realize and share a future quantum ampere

    A 14-channel 7 GHz VCO-based EPR-on-a-chip sensor with rapid scan capabilities

    Get PDF
    This paper presents a VCO-based EPR-on-a-chip (EPRoC) sensor for portable, battery-operated electron paramagnetic resonance (EPR) spectrometers. The proposed chip contains an array of 14 injection-locked VCOs as the sensing element for an improved sensitive volume and phase noise performance. By cointegrating a high-bandwidth PLL, the presented design allows for continuous-wave and rapid-scan EPR experiments with a minimum number of external components. The active loop filter introduces an assisted replica charge pump that mitigates the slewing requirements on the loop-filter amplifier. The measured spin sensitivity of 2×10 9 spins/Hz−−−√ together with the large active volume of 210 nl lead to an 8-fold improvement in concentration sensitivity compared to the state-of-the-art in EPRoC detectors

    On-Chip Nanoscale Plasmonic Optical Modulators

    Get PDF
    In this thesis work, techniques for downsizing Optical modulators to nanoscale for the purpose of utilization in on chip communication and sensing applications are explored. Nanoscale optical interconnects can solve the electronics speed limiting transmission lines, in addition to decrease the electronic chips heat dissipation. A major obstacle in the path of achieving this goal is to build optical modulators, which transforms data from the electrical form to the optical form, in a size comparable to the size of the electronics components, while also having low insertion loss, high extinction ratio and bandwidth. Also, lap-on-chip applications used for fast diagnostics, and which is based on photonic sensors and photonic circuitry, is in need for similar modulator specifications, while it loosens the spec on the modulator’s size. Silicon photonics is the most convenient photonics technology available for optical interconnects application, owing to its compatibility with the mature and cheap CMOS manufacturing process. Hence, building modulators which is exclusively compatible with this technology is a must, although, Plasmonics could be the right technology for downsizing the optical components, owing to its capability in squeezing light in subwavelength dimensions. Hence, our major goal is to build plasmonic modulators, that can be coupled directly to silicon waveguides. A Plasmonic Mach-Zehnder modulator was built, based on the orthogonal junction coupling technique. The footprint of the modulator is decreased to 0.6 4.7, extinction ratio of 15.8 dB and insertion loss of 3.38 dB at 10 volts was achieved in the 3D simulations. The voltage length product for the modulator is 47 V. The orthogonal junction coupler technique minimized the modulator’s footprint. On the other hand, photonic sensors favorably work in the mid-infrared region, owing to the presence of a lot of molecules absorption peaks in this region. Hence, III-V semiconductor media is used for this type of applications, owing to the availability of laser sources built of III-V media, and to the lower losses that these materials have in mid-infrared region. Hybrid plasmonic waveguide, formed of doped InAs, AlAs and GaAs is studied extensively. Based on this waveguide an electro-absorption modulator is built. The device showed an extinction ratio of 27 dB at 40 length, and 1.2 dB of insertion loss. The small device footprint predicts a much lower energy consumption

    Radio Frequency IC Design with Nanoscale DG-MOSFETs

    Get PDF
    corecore