219 research outputs found

    Exploring the design space of HEVC inverse transforms with dataflow programming

    Get PDF
    This paper presents the design space exploration of the hardware-based inverse fixed-point integer transform for High Efficiency Video Coding (HEVC). The designs are specified at high-level using CAL dataflow language and automatically synthesized to HDL for FPGA implementation. Several parallel design alternatives are proposed with trade-off between performance and resource. The HEVC transform consists of several independent components from 4x4 to 32x32 discrete cosine transform and 4x4 discrete sine transform.This work explores the strategies to efficiently compute the transforms by applying data parallelism on the different components. Results show that an intermediate version of parallelism, whereby the 4x4 and 8x8 are merged together, and the 16x16 and 32x32 merged together gives the best trade-off between performance and resource. The results presented in this work also give an insight on how the HEVC transform can be designed efficiently in parallel for hardware implementation

    Area-energy aware dataflow optimisation of visual tracking systems

    Get PDF
    This paper presents an orderly dataflow-optimisation approach suitable for area-energy aware computer vision applications on FPGAs. Vision systems are increasingly being deployed in power constrained scenarios, where the dataflow model of computation has become popular for describing complex algorithms. Dataflow model allows processing datapaths comprised of several independent and well defined computations. However, compilers are often unsuccessful in identifying domain-specific optimisation opportunities resulting in wasted resources and power consumption. We present a methodology for the optimisation of dataflow networks, according to patterns often found in computer vision systems, focusing on identifying optimisations which are not discovered automatically by an optimising compiler. Code transformation using profiling and refactoring provides opportunities to optimise the design, targeting FPGA implementations and focusing on area and power abatement. Our refactoring methodology, applying transformations to a complex algorithm for visual tracking resulted in significant reduction in power consumption and resource usage

    FPGA acceleration of DNA sequence alignment: design analysis and optimization

    Get PDF
    Existing FPGA accelerators for short read mapping often fail to utilize the complete biological information in sequencing data for simple hardware design, leading to missed or incorrect alignment. In this work, we propose a runtime reconfigurable alignment pipeline that considers all information in sequencing data for the biologically accurate acceleration of short read mapping. We focus our efforts on accelerating two string matching techniques: FM-index and the Smith-Waterman algorithm with the affine-gap model which are commonly used in short read mapping. We further optimize the FPGA hardware using a design analyzer and merger to improve alignment performance. The contributions of this work are as follows. 1. We accelerate the exact-match and mismatch alignment by leveraging the FM-index technique. We optimize memory access by compressing the data structure and interleaving the access with multiple short reads. The FM-index hardware also considers complete information in the read data to maximize accuracy. 2. We propose a seed-and-extend model to accelerate alignment with indels. The FM-index hardware is extended to support the seeding stage while a Smith-Waterman implementation with the affine-gap model is developed on FPGA for the extension stage. This model can improve the efficiency of indel alignment with comparable accuracy versus state-of-the-art software. 3. We present an approach for merging multiple FPGA designs into a single hardware design, so that multiple place-and-route tasks can be replaced by a single task to speed up functional evaluation of designs. We first experiment with this approach to demonstrate its feasibility for different designs. Then we apply this approach to optimize one of the proposed FPGA aligners for better alignment performance.Open Acces

    Optimizing Dataflow Programs for Hardware Synthesis

    Get PDF

    Mutual Impact between Clock Gating and High Level Synthesis in Reconfigurable Hardware Accelerators

    Get PDF
    With the diffusion of cyber-physical systems and internet of things, adaptivity and low power consumption became of primary importance in digital systems design. Reconfigurable heterogeneous platforms seem to be one of the most suitable choices to cope with such challenging context. However, their development and power optimization are not trivial, especially considering hardware acceleration components. On the one hand high level synthesis could simplify the design of such kind of systems, but on the other hand it can limit the positive effects of the adopted power saving techniques. In this work, the mutual impact of different high level synthesis tools and the application of the well known clock gating strategy in the development of reconfigurable accelerators is studied. The aim is to optimize a clock gating application according to the chosen high level synthesis engine and target technology (Application Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA)). Different levels of application of clock gating are evaluated, including a novel multi level solution. Besides assessing the benefits and drawbacks of the clock gating application at different levels, hints for future design automation of low power reconfigurable accelerators through high level synthesis are also derived
    • …
    corecore