17 research outputs found

    Parallel architectures and runtime systems co-design for task-based programming models

    Get PDF
    The increasing parallelism levels in modern computing systems has extolled the need for a holistic vision when designing multiprocessor architectures taking in account the needs of the programming models and applications. Nowadays, system design consists of several layers on top of each other from the architecture up to the application software. Although this design allows to do a separation of concerns where it is possible to independently change layers due to a well-known interface between them, it is hampering future systems design as the Law of Moore reaches to an end. Current performance improvements on computer architecture are driven by the shrinkage of the transistor channel width, allowing faster and more power efficient chips to be made. However, technology is reaching physical limitations were the transistor size will not be able to be reduced furthermore and requires a change of paradigm in systems design. This thesis proposes to break this layered design, and advocates for a system where the architecture and the programming model runtime system are able to exchange information towards a common goal, improve performance and reduce power consumption. By making the architecture aware of runtime information such as a Task Dependency Graph (TDG) in the case of dataflow task-based programming models, it is possible to improve power consumption by exploiting the critical path of the graph. Moreover, the architecture can provide hardware support to create such a graph in order to reduce the runtime overheads and making possible the execution of fine-grained tasks to increase the available parallelism. Finally, the current status of inter-node communication primitives can be exposed to the runtime system in order to perform a more efficient communication scheduling, and also creates new opportunities of computation and communication overlap that were not possible before. An evaluation of the proposals introduced in this thesis is provided and a methodology to simulate and characterize the application behavior is also presented.El aumento del paralelismo proporcionado por los sistemas de cómputo modernos ha provocado la necesidad de una visión holística en el diseño de arquitecturas multiprocesador que tome en cuenta las necesidades de los modelos de programación y las aplicaciones. Hoy en día el diseño de los computadores consiste en diferentes capas de abstracción con una interfaz bien definida entre ellas. Las limitaciones de esta aproximación junto con el fin de la ley de Moore limitan el potencial de los futuros computadores. La mayoría de las mejoras actuales en el diseño de los computadores provienen fundamentalmente de la reducción del tamaño del canal del transistor, lo cual permite chips más rápidos y con un consumo eficiente sin apenas cambios fundamentales en el diseño de la arquitectura. Sin embargo, la tecnología actual está alcanzando limitaciones físicas donde no será posible reducir el tamaño de los transistores motivando así un cambio de paradigma en la construcción de los computadores. Esta tesis propone romper este diseño en capas y abogar por un sistema donde la arquitectura y el sistema de tiempo de ejecución del modelo de programación sean capaces de intercambiar información para alcanzar una meta común: La mejora del rendimiento y la reducción del consumo energético. Haciendo que la arquitectura sea consciente de la información disponible en el modelo de programación, como puede ser el grafo de dependencias entre tareas en los modelos de programación dataflow, es posible reducir el consumo energético explotando el camino critico del grafo. Además, la arquitectura puede proveer de soporte hardware para crear este grafo con el objetivo de reducir el overhead de construir este grado cuando la granularidad de las tareas es demasiado fina. Finalmente, el estado de las comunicaciones entre nodos puede ser expuesto al sistema de tiempo de ejecución para realizar una mejor planificación de las comunicaciones y creando nuevas oportunidades de solapamiento entre cómputo y comunicación que no eran posibles anteriormente. Esta tesis aporta una evaluación de todas estas propuestas, así como una metodología para simular y caracterizar el comportamiento de las aplicacionesPostprint (published version

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    A mixed-signal computer architecture and its application to power system problems

    Get PDF
    Radical changes are taking place in the landscape of modern power systems. This massive shift in the way the system is designed and operated has been termed the advent of the ``smart grid''. One of its implications is a strong market pull for faster power system analysis computing. This work is concerned in particular with transient simulation, which is one of the most demanding power system analyses. This refers to the imitation of the operation of the real-world system over time, for time scales that cover the majority of slow electromechanical transient phenomena. The general mathematical formulation of the simulation problem includes a set of non-linear differential algebraic equations (DAEs). In the algebraic part of this set, heavy linear algebra computations are included, which are related to the admittance matrix of the topology. These computations are a critical factor to the overall performance of a transient simulator. This work proposes the use of analog electronic computing as a means of exceeding the performance barriers of conventional digital computers for the linear algebra operations. Analog computing is integrated in the frame of a power system transient simulator yielding significant computational performance benefits to the latter. Two hybrid, analog and digital computers are presented. The first prototype has been implemented using reconfigurable hardware. In its core, analog computing is used for linear algebra operations, while pipelined digital resources on a field programmable gate array (FPGA) handle all remaining computations. The properties of the analog hardware are thoroughly examined, with special attention to accuracy and timing. The application of the platform to the transient analysis of power system dynamics showed a speedup of two orders of magnitude against conventional software solutions. The second prototype is proposed as a future conceptual architecture that would overcome the limitations of the already implemented hardware, while retaining its virtues. The design space of this future architecture has been thoroughly explored, with the help of a software emulator. For one possible suggested implementation, speedups of four orders of magnitude against software solvers have been observed for the linear algebra operations

    Efficient FPGA implementation and power modelling of image and signal processing IP cores

    Get PDF
    Field Programmable Gate Arrays (FPGAs) are the technology of choice in a number ofimage and signal processing application areas such as consumer electronics, instrumentation, medical data processing and avionics due to their reasonable energy consumption, high performance, security, low design-turnaround time and reconfigurability. Low power FPGA devices are also emerging as competitive solutions for mobile and thermally constrained platforms. Most computationally intensive image and signal processing algorithms also consume a lot of power leading to a number of issues including reduced mobility, reliability concerns and increased design cost among others. Power dissipation has become one of the most important challenges, particularly for FPGAs. Addressing this problem requires optimisation and awareness at all levels in the design flow. The key achievements of the work presented in this thesis are summarised here. Behavioural level optimisation strategies have been used for implementing matrix product and inner product through the use of mathematical techniques such as Distributed Arithmetic (DA) and its variations including offset binary coding, sparse factorisation and novel vector level transformations. Applications to test the impact of these algorithmic and arithmetic transformations include the fast Hadamard/Walsh transforms and Gaussian mixture models. Complete design space exploration has been performed on these cores, and where appropriate, they have been shown to clearly outperform comparable existing implementations. At the architectural level, strategies such as parallelism, pipelining and systolisation have been successfully applied for the design and optimisation of a number of cores including colour space conversion, finite Radon transform, finite ridgelet transform and circular convolution. A pioneering study into the influence of supply voltage scaling for FPGA based designs, used in conjunction with performance enhancing strategies such as parallelism and pipelining has been performed. Initial results are very promising and indicated significant potential for future research in this area. A key contribution of this work includes the development of a novel high level power macromodelling technique for design space exploration and characterisation of custom IP cores for FPGAs, called Functional Level Power Analysis and Modelling (FLPAM). FLPAM is scalable, platform independent and compares favourably with existing approaches. A hybrid, top-down design flow paradigm integrating FLPAM with commercially available design tools for systematic optimisation of IP cores has also been developed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Energy Efficient VLSI Circuits for MIMO-WLAN

    Get PDF
    Mobile communication - anytime, anywhere access to data and communication services - has been continuously increasing since the operation of the first wireless communication link by Guglielmo Marconi. The demand for higher data rates, despite the limited bandwidth, led to the development of multiple-input multiple-output (MIMO) communication which is often combined with orthogonal frequency division multiplexing (OFDM). Together, these two techniques achieve a high bandwidth efficiency. Unfortunately, techniques such as MIMO-OFDM significantly increase the signal processing complexity of transceivers. While fast improvements in the integrated circuit (IC) technology enabled to implement more signal processing complexity per chip, large efforts had and have to be done for novel algorithms as well as for efficient very large scaled integration (VLSI) architectures in order to meet today's and tomorrow's requirements for mobile wireless communication systems. In this thesis, we will present architectures and VLSI implementations of complete physical (PHY) layer application specific integrated circuits (ASICs) under the constraints imposed by an industrial wireless communication standard. Contrary to many other publications, we do not elaborate individual components of a MIMO-OFDM communication system stand-alone, but in the context of the complete PHY layer ASIC. We will investigate the performance of several MIMO detectors and the corresponding preprocessing circuits, being integrated into the entire PHY layer ASIC, in terms of achievable error-rate, power consumption, and area requirement. Finally, we will assemble the results from the proposed PHY layer implementations in order to enhance the energy efficiency of a transceiver. To this end, we propose a cross-layer optimization of PHY layer and medium access control (MAC) layer

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Generic low power reconfigurable distributed arithmetic processor

    Get PDF
    Higher performance, lower cost, increasingly minimizing integrated circuit components, and higher packaging density of chips are ongoing goals of the microelectronic and computer industry. As these goals are being achieved, however, power consumption and flexibility are increasingly becoming bottlenecks that need to be addressed with the new technology in Very Large-Scale Integrated (VLSI) design. For modern systems, more energy is required to support the powerful computational capability which accords with the increasing requirements, and these requirements cause the change of standards not only in audio and video broadcasting but also in communication such as wireless connection and network protocols. Powerful flexibility and low consumption are repellent, but their combination in one system is the ultimate goal of designers. A generic domain-specific low-power reconfigurable processor for the distributed arithmetic algorithm is presented in this dissertation. This domain reconfigurable processor features high efficiency in terms of area, power and delay, which approaches the performance of an ASIC design, while retaining the flexibility of programmable platforms. The architecture not only supports typical distributed arithmetic algorithms which can be found in most still picture compression standards and video conferencing standards, but also offers implementation ability for other distributed arithmetic algorithms found in digital signal processing, telecommunication protocols and automatic control. In this processor, a simple reconfigurable low power control unit is implemented with good performance in area, power and timing. The generic characteristic of the architecture makes it applicable for any small and medium size finite state machines which can be used as control units to implement complex system behaviour and can be found in almost all engineering disciplines. Furthermore, to map target applications efficiently onto the proposed architecture, a new algorithm is introduced for searching for the best common sharing terms set and it keeps the area and power consumption of the implementation at low level. The software implementation of this algorithm is presented, which can be used not only for the proposed architecture in this dissertation but also for all the implementations with adder-based distributed arithmetic algorithms. In addition, some low power design techniques are applied in the architecture, such as unsymmetrical design style including unsymmetrical interconnection arranging, unsymmetrical PTBs selection and unsymmetrical mapping basic computing units. All these design techniques achieve extraordinary power consumption saving. It is believed that they can be extended to more low power designs and architectures. The processor presented in this dissertation can be used to implement complex, high performance distributed arithmetic algorithms for communication and image processing applications with low cost in area and power compared with the traditional methods

    Proceedings of the Fifth NASA/NSF/DOD Workshop on Aerospace Computational Control

    Get PDF
    The Fifth Annual Workshop on Aerospace Computational Control was one in a series of workshops sponsored by NASA, NSF, and the DOD. The purpose of these workshops is to address computational issues in the analysis, design, and testing of flexible multibody control systems for aerospace applications. The intention in holding these workshops is to bring together users, researchers, and developers of computational tools in aerospace systems (spacecraft, space robotics, aerospace transportation vehicles, etc.) for the purpose of exchanging ideas on the state of the art in computational tools and techniques
    corecore