29 research outputs found

    Compilation Techniques for High-Performance Embedded Systems with Multiple Processors

    Get PDF
    Institute for Computing Systems ArchitectureDespite the progress made in developing more advanced compilers for embedded systems, programming of embedded high-performance computing systems based on Digital Signal Processors (DSPs) is still a highly skilled manual task. This is true for single-processor systems, and even more for embedded systems based on multiple DSPs. Compilers often fail to optimise existing DSP codes written in C due to the employed programming style. Parallelisation is hampered by the complex multiple address space memory architecture, which can be found in most commercial multi-DSP configurations. This thesis develops an integrated optimisation and parallelisation strategy that can deal with low-level C codes and produces optimised parallel code for a homogeneous multi-DSP architecture with distributed physical memory and multiple logical address spaces. In a first step, low-level programming idioms are identified and recovered. This enables the application of high-level code and data transformations well-known in the field of scientific computing. Iterative feedback-driven search for “good” transformation sequences is being investigated. A novel approach to parallelisation based on a unified data and loop transformation framework is presented and evaluated. Performance optimisation is achieved through exploitation of data locality on the one hand, and utilisation of DSP-specific architectural features such as Direct Memory Access (DMA) transfers on the other hand. The proposed methodology is evaluated against two benchmark suites (DSPstone & UTDSP) and four different high-performance DSPs, one of which is part of a commercial four processor multi-DSP board also used for evaluation. Experiments confirm the effectiveness of the program recovery techniques as enablers of high-level transformations and automatic parallelisation. Source-to-source transformations of DSP codes yield an average speedup of 2.21 across four different DSP architectures. The parallelisation scheme is – in conjunction with a set of locality optimisations – able to produce linear and even super-linear speedups on a number of relevant DSP kernels and applications

    Using Machine Learning to Automate Compiler Optimisation

    Get PDF
    Institute for Computing Systems ArchitectureMany optimisations in modern compilers have been traditionally based around using analysis to examine certain aspects of the code; the compiler heuristics then make a decision based on this information as to what to optimise, where to optimise and to what extent to optimise. The exact contents of these heuristics have been carefully tuned by experts, using their experience, as well as analytical tools, to produce solid performance. This work proposes an alternative approach – that of using proper statistical analysis to drive these optimisation goals instead of human intuition, through the use of machine learning. This work shows how, by using a probabilistic search of the optimisation space, we can achieve a significant speedup over the baseline compiler with the highest optimisation settings, on a number of different processor architectures. Additionally, there follows a further methodology for speeding up this search by being able to transfer our knowledge of one program to another. This thesis shows that, as is the case in many other domains, programs can be successfully represented by program features, which can then be used to gauge their similarity and thus the applicability of previously learned off-line knowledge. Employing this method, we are able to gain the same results in terms of performance, reducing the time taken by an order of magnitude. Finally, it is demonstrated how statistical analysis of programs allows us to learn additional important optimisation information, purely by examining the features alone. By incorporating this additional information into our model, we show how good results can be achieved in just one compilation. This work is tested on real hardware, for both the embedded and general purpose domain, showing its wide applicability

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Constraint analysis for DSP code generation

    Get PDF
    +113hlm.;24c

    Just-in-time Hardware generation for abstracted reconfigurable computing

    Get PDF
    This thesis addresses the use of reconfigurable hardware in computing platforms, in order to harness the performance benefits of dedicated hardware whilst maintaining the flexibility associated with software. Although the reconfigurable computing concept is not new, the low level nature of the supporting tools normally used, together with the consequent limited level of abstraction and resultant lack of backwards compatibility, has prevented the widespread adoption of this technology. In addition, bandwidth and architectural limitations, have seriously constrained the potential improvements in performance. A review of existing approaches and tools flows is conducted to highlight the current problems being faced in this field. The objective of the work presented in this thesis is to introduce a radically new approach to reconfigurable computing tool flows. The runtime based tool flow introduces complete abstraction between the application developer and the underlying hardware. This new technique eliminates the ease of use and backwards compatibility issues that have plagued the reconfigurable computing concept, and could pave the way for viable mainstream reconfigurable computing platforms. An easy to use, cycle accurate behavioural modelling system is also presented, which was used extensively during the early exploration of new concepts and architectures. Some performance improvements produced by the new reconfigurable computing tool flow, when applied to both a MIPS based embedded platform, and the Cray XDl, are also presented. These results are then analyzed and the hardware and software factors affecting the performance increases that were obtained are discussed, together with potential techniques that could be used to further increase the performance of the system. Lastly a heterogenous computing concept is proposed, in which, a computer system, containing multiple types of computational resource is envisaged, each having their own strengths and weaknesses (e.g. DSPs, CPUs, FPGAs). A revolutionary new method of fully exploiting the potential of such a system, whilst maintaining scalability, backwards compatibility, and ease of use is also presented

    On the automated compilation of UML notation to a VLIW chip multiprocessor

    Get PDF
    With the availability of more and more cores within architectures the process of extracting implicit and explicit parallelism in applications to fully utilise these cores is becoming complex. Implicit parallelism extraction is performed through the inclusion of intelligent software and hardware sections of tool chains although these reach their theoretical limit rather quickly. Due to this the concept of a method of allowing explicit parallelism to be performed as fast a possible has been investigated. This method enables application developers to perform creation and synchronisation of parallel sections of an application at a finer-grained level than previously possible, resulting in smaller sections of code being executed in parallel while still reducing overall execution time. Alongside explicit parallelism, a concept of high level design of applications destined for multicore systems was also investigated. As systems are getting larger it is becoming more difficult to design and track the full life-cycle of development. One method used to ease this process is to use a graphical design process to visualise the high level designs of such systems. One drawback in graphical design is the explicit nature in which systems are required to be generated, this was investigated, and using concepts already in use in text based programming languages, the generation of platform-independent models which are able to be specialised to multiple hardware architectures was developed. The explicit parallelism was performed using hardware elements to perform thread management, this resulted in speed ups of over 13 times when compared to threading libraries executed in software on commercially available processors. This allowed applications with large data dependent sections to be parallelised in small sections within the code resulting in a decrease of overall execution time. The modelling concepts resulted in the saving of between 40-50% of the time and effort required to generate platform-specific models while only incurring an overhead of up to 15% the execution cycles of these models designed for specific architectures
    corecore