535 research outputs found

    Open-loop stochastic optimal control of a passive noiserejection variable stiffness actuator: Application to unstable tasks

    Get PDF
    Abstract-In this paper we propose a methodology to control a novel class of actuators that we called passive noise rejection variable stiffness actuators (pnrVSA). Differently from nowadays classical VSA designs, this novel class of actuators mimics the human musculoskeletal ability to increase noise rejection without relying on feedback. To fully highlight the potentialities behind these actuators we consider movement planning under two constraints: (1) absence of feedback, i.e. purely open-loop planning 1 ; (2) uncertain dynamic model. Under these constraints, movement planning can be formalized as an open-loop stochastic optimal control. Due to the lack of classical methods forcing the open-loop nature of the computed solution, we used here a slight modification of available methodologies based on importance sampling of trajectories using forward diffusion processes. Simulations show that the proposed algorithm can be effectively used to plan open-loop movements with pnrVSA. In particular, two different scenarios are considered: the control of a single joint pnrVSA and the control of a two degrees of freedom planar arm equipped with antagonist pnrVSAs at each joint. In both cases, movement has to be planned in presence of uncertain dynamics for unstable tasks. It is shown that open-loop stochastic optimal control can modulate the intrinsic stiffness of the system to cope with both instability and noise

    Stiction Compensation in Agonist-Antagonist Variable Stiffness Actuators

    Full text link

    Designing a Biomimetic Testing Platform for Actuators in a Series-Elastic Co-contraction System

    Full text link
    Actuators determine the performance of robotic systems at the most intimate of levels. As a result, much work has been done to assess the performance of different actuator systems. However, biomimetics has not previously been utilized as a pretext for tuning a series elastic actuator system with the purpose of designing an empirical testing platform. Thus, an artificial muscle tendon system has been developed in order to assess the performance of two distinct actuator types: (1) direct current electromagnetic motors and (2) ultrasonic rotary piezoelectric motors. Because the design of the system takes advantage of biomimetic operating principles such as co-contraction in an agonist-antagonist configuration, it exists as an ideal system for testing different actuators for implicit performance attributes that may or may not come closer to the physiological performance of biological muscle. In order to assess the respective performances of the two actuator types, error and system efficiency were both measured simultaneously in an attempt to characterize the fidelity and efficacy of the force-feedback control system. Although both motor types were shown to perform competitively by torque error, the electromagnetic motors outperformed in terms of efficiency. It is ultimately concluded that either actuator type may perform more impressively than the other when operating under the appropriate context of application. Specifically, it remains the interpretation of this study that piezoelectric motors require a stiffer elasticity as well as an extremely fast controller frequency in order to fully take advantage of its ultra-fast response time characteristic for torque control

    Pattern recognition-based real-time myoelectric control for anthropomorphic robotic systems : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechatronics at Massey University, Manawatū, New Zealand

    Get PDF
    All copyrighted Figures have been removed but may be accessed via their source cited in their respective captions.Advanced human-computer interaction (HCI) or human-machine interaction (HMI) aims to help humans interact with computers smartly. Biosignal-based technology is one of the most promising approaches in developing intelligent HCI systems. As a means of convenient and non-invasive biosignal-based intelligent control, myoelectric control identifies human movement intentions from electromyogram (EMG) signals recorded on muscles to realise intelligent control of robotic systems. Although the history of myoelectric control research has been more than half a century, commercial myoelectric-controlled devices are still mostly based on those early threshold-based methods. The emerging pattern recognition-based myoelectric control has remained an active research topic in laboratories because of insufficient reliability and robustness. This research focuses on pattern recognition-based myoelectric control. Up to now, most of effort in pattern recognition-based myoelectric control research has been invested in improving EMG pattern classification accuracy. However, high classification accuracy cannot directly lead to high controllability and usability for EMG-driven systems. This suggests that a complete system that is composed of relevant modules, including EMG acquisition, pattern recognition-based gesture discrimination, output equipment and its controller, is desirable and helpful as a developing and validating platform that is able to closely emulate real-world situations to promote research in myoelectric control. This research aims at investigating feasible and effective EMG signal processing and pattern recognition methods to extract useful information contained in EMG signals to establish an intelligent, compact and economical biosignal-based robotic control system. The research work includes in-depth study on existing pattern recognition-based methodologies, investigation on effective EMG signal capturing and data processing, EMG-based control system development, and anthropomorphic robotic hand design. The contributions of this research are mainly in following three aspects: Developed precision electronic surface EMG (sEMG) acquisition methods that are able to collect high quality sEMG signals. The first method was designed in a single-ended signalling manner by using monolithic instrumentation amplifiers to determine and evaluate the analog sEMG signal processing chain architecture and circuit parameters. This method was then evolved into a fully differential analog sEMG detection and collection method that uses common commercial electronic components to implement all analog sEMG amplification and filtering stages in a fully differential way. The proposed fully differential sEMG detection and collection method is capable of offering a higher signal-to-noise ratio in noisy environments than the single-ended method by making full use of inherent common-mode noise rejection capability of balanced signalling. To the best of my knowledge, the literature study has not found similar methods that implement the entire analog sEMG amplification and filtering chain in a fully differential way by using common commercial electronic components. Investigated and developed a reliable EMG pattern recognition-based real-time gesture discrimination approach. Necessary functional modules for real-time gesture discrimination were identified and implemented using appropriate algorithms. Special attention was paid to the investigation and comparison of representative features and classifiers for improving accuracy and robustness. A novel EMG feature set was proposed to improve the performance of EMG pattern recognition. Designed an anthropomorphic robotic hand construction methodology for myoelectric control validation on a physical platform similar to in real-world situations. The natural anatomical structure of the human hand was imitated to kinematically model the robotic hand. The proposed robotic hand is a highly underactuated mechanism, featuring 14 degrees of freedom and three degrees of actuation. This research carried out an in-depth investigation into EMG data acquisition and EMG signal pattern recognition. A series of experiments were conducted in EMG signal processing and system development. The final myoelectric-controlled robotic hand system and the system testing confirmed the effectiveness of the proposed methods for surface EMG acquisition and human hand gesture discrimination. To verify and demonstrate the proposed myoelectric control system, real-time tests were conducted onto the anthropomorphic prototype robotic hand. Currently, the system is able to identify five patterns in real time, including hand open, hand close, wrist flexion, wrist extension and the rest state. With more motion patterns added in, this system has the potential to identify more hand movements. The research has generated a few journal and international conference publications

    Sliding mode control of robotics systems actuated by pneumatic muscles.

    Get PDF
    This dissertation is concerned with investigating robust approaches for the control of pneumatic muscle systems. Pneumatic muscle is a novel type of actuator. Besides having a high ratio of power to weight and flexible control of movement, it also exhibits many analogical behaviors to natural skeletal muscle, which makes them the ideal candidate for applications of anthropomorphic robotic systems. In this dissertation, a new phenomenological model of pneumatic muscle developed in the Human Sensory Feedback Laboratory at Wright Patterson Air Force Base is investigated. The closed loop stability of a one-link planar arm actuated by two pneumatic muscles using linear state feedback is proved. Robotic systems actuated by pneumatic muscles are time-varying and nonlinear due to load variations and uncertainties of system parameters caused by the effects of heat. Sliding mode control has the advantage that it can provide robust control performance in the presence of model uncertainties. Therefore, it is mainly utilized and further complemented with other control methods in this dissertation to design the appropriate controller to perform the tasks commanded by system operation. First, a sliding mode controller is successfully proposed to track the elbow angle with bounded error in a one-Joint limb system with pneumatic muscles in bicep/tricep configuration. Secondly, fuzzy control, which aims to dynamically adjust the sliding surface, is used along with sliding mode control. The so-called fuzzy sliding mode control method is applied to control the motion of the end-effector in a two-Joint planar arm actuated by four groups of pneumatic muscles. Through computer simulation, the fuzzy sliding mode control shows very good tracking accuracy superior to nonfuzzy sliding mode control. Finally, a two-joint planar arm actuated by four groups of pneumatic muscles operated in an assumed industrial environment is presented. Based on the model, an integral sliding mode control scheme is proposed as an ultimate solution to the control of systems actuated by pneumatic muscles. As the theoretical proof and computer simulations show, the integral sliding mode controller, with strong robustness to model uncertainties and external perturbations, is superior for performing the commanded control assignment. Based on the investigation in this dissertation, integral sliding mode control proposed here is a very promising robust control approach to handle systems actuated by pneumatic muscles

    Simulation And Control At the Boundaries Between Humans And Assistive Robots

    Get PDF
    Human-machine interaction has become an important area of research as progress is made in the fields of rehabilitation robotics, powered prostheses, and advanced exercise machines. Adding to the advances in this area, a novel controller for a powered transfemoral prosthesis is introduced that requires limited tuning and explicitly considers energy regeneration. Results from a trial conducted with an individual with an amputation show self-powering operation for the prosthesis while concurrently attaining basic gait fidelity across varied walking speeds. Experience in prosthesis development revealed that, though every effort is made to ensure the safety of the human subject, limited testing of such devices prior to human trials can be completed in the current research environment. Two complementary alternatives are developed to fill that gap. First, the feasibility of implementing impulse-momentum sliding mode control on a robot that can physically replace a human with a transfemoral amputation to emulate weight-bearing for initial prototype walking tests is established. Second, a more general human simulation approach is proposed that can be used in any of the aforementioned human-machine interaction fields. Seeking this general human simulation method, a unique pair of solutions for simulating a Hill muscle-actuated linkage system is formulated. These include using the Lyapunov-based backstepping control method to generate a closed-loop tracking simulation and, motivated by limitations observed in backstepping, an optimal control solver based on differential flatness and sum of squares polynomials in support of receding horizon controlled (e.g. model predictive control) or open-loop simulations. v The backstepping framework provides insight into muscle redundancy resolution. The optimal control framework uses this insight to produce a computationally efficient approach to musculoskeletal system modeling. A simulation of a human arm is evaluated in both structures. Strong tracking performance is achieved in the backstepping case. An exercise optimization application using the optimal control solver showcases the computational benefits of the solver and reveals the feasibility of finding trajectories for human-exercise machine interaction that can isolate a muscle of interest for strengthening

    Quantitative characterization of multi-variable human ankle mechanical impedance

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 222-230).Ankle mechanical impedance, which is a dynamic relationship between angular displacement and the corresponding torque at the ankle joint, plays a key role in natural interaction of the lower-extremity with the environment. The human ankle is a biomechanically complex joint consisting of three bones with non-intersecting anatomical axes, and its motions under normal motor control and function are predominantly in multiple degrees-of-freedom (DOF). This thesis provides a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects in two DOF, both in the sagittal and the frontal planes. Multi-variable studies provide several important characteristics of the human ankle, unavailable from single DOF studies, which have mostly been in the sagittal plane. Three characterization methods were developed to study ankle mechanical impedance in different conditions: 1) steady-state static, 2) steady-state dynamic, and 3) transient dynamic. First, steady-state static ankle mechanical impedance, which is a non-linear torque and angle relationship at the ankle, was characterized in two coupled DOFs over the normal range of motion. Robust vector field approximation methods based on thin-plate spline smoothing with generalized cross validation showed that static ankle impedance is highly direction dependent, being weak in the inversion-eversion direction. Activating a single muscle or co-contracting antagonistic muscles significantly increased static ankle impedance in all directions but more in the dorsiflexion-plantarflexion direction than the inversion-eversion. Static ankle behavior in both relaxed and active muscles was close to that of a passive elastic system. Second, steady-state dynamic ankle mechanical impedance was characterized based on linear time-invariant multi-input multi-output stochastic system identification methods. A highly linear relationship between muscle activation and ankle impedance was identified in all movement directions in the sagittal and frontal planes. Furthermore, small coupling between 2 DOF and energetic passivity were observed at different levels of muscle activation and over a wide frequency range. Third, transient dynamic ankle mechanical impedance was characterized during walking on a treadmill, across the gait cycle from the end of stance phase through swing and to early stance phase. Modified linear time-varying ensemble based system identification methods enabled reliable identification of transient behavior of the ankle. In both DOF, damping and stiffness decreased at the end of stance phase before the toe-off, remained relatively constant during the whole swing phase, and substantially increased around the heel-strike. Quantitative characterization of multi-variable ankle mechanical impedance of young healthy subjects will shed light on its roles in lower-extremity motor function. It will serve as a baseline for clinical studies in patients, especially those with neurological disorders, as well as studies of elderly subjects, whose biomechanical and neurological properties may be altered due to impairments and/or aging. Finally, the methods presented in this thesis are intended to be sufficiently general to be applicable to any multi-joint system or single joint having multiple DOF.by Hyunglae Lee.Ph.D

    Investigation into the control of an upper-limb myoelectric prosthesis

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:DXN053608 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    • …
    corecore