187 research outputs found

    High Performance Computing using Infiniband-based clusters

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Enhancing HPC on Virtual Systems in Clouds through Optimizing Virtual Overlay Networks

    Get PDF
    Virtual Ethernet overlay provides a powerful model for realizing virtual distributed and parallel computing systems with strong isolation, portability, and recoverability properties. However, in extremely high throughput and low latency networks, such overlays can suffer from bandwidth and latency limitations, which is of particular concern in HPC environments. Through a careful and quantitative analysis, I iden- tify three core issues limiting performance: delayed and excessive virtual interrupt delivery into guests, copies between host and guest data buffers during encapsulation, and the semantic gap between virtual Ethernet features and underlying physical network features. I propose three novel optimizations in response: optimistic timer- free virtual interrupt injection, zero-copy cut-through data forwarding, and virtual TCP offload. These optimizations improve the latency and bandwidth of the overlay network on 10 Gbps Ethernet and InfiniBand interconnects, resulting in near-native performance for a wide range of microbenchmarks and MPI application benchmarks

    GPU peer-to-peer techniques applied to a cluster interconnect

    Full text link
    Modern GPUs support special protocols to exchange data directly across the PCI Express bus. While these protocols could be used to reduce GPU data transmission times, basically by avoiding staging to host memory, they require specific hardware features which are not available on current generation network adapters. In this paper we describe the architectural modifications required to implement peer-to-peer access to NVIDIA Fermi- and Kepler-class GPUs on an FPGA-based cluster interconnect. Besides, the current software implementation, which integrates this feature by minimally extending the RDMA programming model, is discussed, as well as some issues raised while employing it in a higher level API like MPI. Finally, the current limits of the technique are studied by analyzing the performance improvements on low-level benchmarks and on two GPU-accelerated applications, showing when and how they seem to benefit from the GPU peer-to-peer method.Comment: paper accepted to CASS 201

    Scientific Programming and Computer Architecture

    Get PDF
    A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer.What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text

    InfiniBand verbs optimizations for remote GPU virtualization

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The use of InfiniBand networks to interconnect high performance computing clusters has considerably increased during the last years. So much so that the majority of the supercomputers included in the TOP500 list either use Ethernet or InfiniBand interconnects. Regarding the latter, due to the complexity of the InfiniBand programming API (i.e., InfiniBand Verbs) and the lack of documentation, there are not enough recent available studies explaining how to optimize applications to get the maximum performance from this fabric. In this paper we expose two different optimizations to be used when developing applications using InfiniBand Verbs, each providing an average bandwidth improvement of 3.68% and 217.14%, respectively. In addition, we show that when combining both optimizations, the average bandwidth gain is 43.29%. This bandwidth increment is key for remote GPU virtualization frameworks. Actually, this noticeable gain translates into a reduction of up to 35% in execution time of applications using remote GPU virtualization frameworks.This work was funded by the Generalitat Valenciana under Grant PROMETEOII/2013/009 of the PROMETEO program phase II. Authors are also grateful for the generous support provided by Mellanox TechnologiesReaño González, C.; Silla Jiménez, F. (2015). InfiniBand verbs optimizations for remote GPU virtualization. IEEE. https://doi.org/10.1109/CLUSTER.2015.139

    On the Enhancement of Remote GPU Virtualization in High Performance Clusters

    Full text link
    Graphics Processing Units (GPUs) are being adopted in many computing facilities given their extraordinary computing power, which makes it possible to accelerate many general purpose applications from different domains. However, GPUs also present several side effects, such as increased acquisition costs as well as larger space requirements. They also require more powerful energy supplies. Furthermore, GPUs still consume some amount of energy while idle and their utilization is usually low for most workloads. In a similar way to virtual machines, the use of virtual GPUs may address the aforementioned concerns. In this regard, the remote GPU virtualization mechanism allows an application being executed in a node of the cluster to transparently use the GPUs installed at other nodes. Moreover, this technique allows to share the GPUs present in the computing facility among the applications being executed in the cluster. In this way, several applications being executed in different (or the same) cluster nodes can share one or more GPUs located in other nodes of the cluster. Sharing GPUs should increase overall GPU utilization, thus reducing the negative impact of the side effects mentioned before. Reducing the total amount of GPUs installed in the cluster may also be possible. In this dissertation we enhance one framework offering remote GPU virtualization capabilities, referred to as rCUDA, for its use in high-performance clusters. While the initial prototype version of rCUDA demonstrated its functionality, it also revealed concerns with respect to usability, performance, and support for new GPU features, which prevented its used in production environments. These issues motivated this thesis, in which all the research is primarily conducted with the aim of turning rCUDA into a production-ready solution for eventually transferring it to industry. The new version of rCUDA resulting from this work presents a reduction of up to 35% in execution time of the applications analyzed with respect to the initial version. Compared to the use of local GPUs, the overhead of this new version of rCUDA is below 5% for the applications studied when using the latest high-performance computing networks available.Las unidades de procesamiento gráfico (Graphics Processing Units, GPUs) están siendo utilizadas en muchas instalaciones de computación dada su extraordinaria capacidad de cálculo, la cual hace posible acelerar muchas aplicaciones de propósito general de diferentes dominios. Sin embargo, las GPUs también presentan algunas desventajas, como el aumento de los costos de adquisición, así como mayores requerimientos de espacio. Asimismo, también requieren un suministro de energía más potente. Además, las GPUs consumen una cierta cantidad de energía aún estando inactivas, y su utilización suele ser baja para la mayoría de las cargas de trabajo. De manera similar a las máquinas virtuales, el uso de GPUs virtuales podría hacer frente a los inconvenientes mencionados. En este sentido, el mecanismo de virtualización remota de GPUs permite que una aplicación que se ejecuta en un nodo de un clúster utilice de forma transparente las GPUs instaladas en otros nodos de dicho clúster. Además, esta técnica permite compartir las GPUs presentes en el clúster entre las aplicaciones que se ejecutan en el mismo. De esta manera, varias aplicaciones que se ejecutan en diferentes nodos de clúster (o los mismos) pueden compartir una o más GPUs ubicadas en otros nodos del clúster. Compartir GPUs aumenta la utilización general de la GPU, reduciendo así el impacto negativo de las desventajas anteriormente mencionadas. De igual forma, este mecanismo también permite reducir la cantidad total de GPUs instaladas en el clúster. En esta tesis mejoramos un entorno de trabajo llamado rCUDA, el cual ofrece funcionalidades de virtualización remota de GPUs para su uso en clusters de altas prestaciones. Si bien la versión inicial del prototipo de rCUDA demostró su funcionalidad, también reveló dificultades con respecto a la usabilidad, el rendimiento y el soporte para nuevas características de las GPUs, lo cual impedía su uso en entornos de producción. Estas consideraciones motivaron la presente tesis, en la que toda la investigación llevada a cabo tiene como objetivo principal convertir rCUDA en una solución lista para su uso entornos de producción, con la finalidad de transferirla eventualmente a la industria. La nueva versión de rCUDA resultante de este trabajo presenta una reducción de hasta el 35% en el tiempo de ejecución de las aplicaciones analizadas con respecto a la versión inicial. En comparación con el uso de GPUs locales, la sobrecarga de esta nueva versión de rCUDA es inferior al 5% para las aplicaciones estudiadas cuando se utilizan las últimas redes de computación de altas prestaciones disponibles.Les unitats de processament gràfic (Graphics Processing Units, GPUs) estan sent utilitzades en moltes instal·lacions de computació donada la seva extraordinària capacitat de càlcul, la qual fa possible accelerar moltes aplicacions de propòsit general de diferents dominis. No obstant això, les GPUs també presenten alguns desavantatges, com l'augment dels costos d'adquisició, així com major requeriment d'espai. Així mateix, també requereixen un subministrament d'energia més potent. A més, les GPUs consumeixen una certa quantitat d'energia encara estant inactives, i la seua utilització sol ser baixa per a la majoria de les càrregues de treball. D'una manera semblant a les màquines virtuals, l'ús de GPUs virtuals podria fer front als inconvenients esmentats. En aquest sentit, el mecanisme de virtualització remota de GPUs permet que una aplicació que s'executa en un node d'un clúster utilitze de forma transparent les GPUs instal·lades en altres nodes d'aquest clúster. A més, aquesta tècnica permet compartir les GPUs presents al clúster entre les aplicacions que s'executen en el mateix. D'aquesta manera, diverses aplicacions que s'executen en diferents nodes de clúster (o els mateixos) poden compartir una o més GPUs ubicades en altres nodes del clúster. Compartir GPUs augmenta la utilització general de la GPU, reduint així l'impacte negatiu dels desavantatges anteriorment esmentades. A més a més, aquest mecanisme també permet reduir la quantitat total de GPUs instal·lades al clúster. En aquesta tesi millorem un entorn de treball anomenat rCUDA, el qual ofereix funcionalitats de virtualització remota de GPUs per al seu ús en clústers d'altes prestacions. Si bé la versió inicial del prototip de rCUDA va demostrar la seua funcionalitat, també va revelar dificultats pel que fa a la usabilitat, el rendiment i el suport per a noves característiques de les GPUs, la qual cosa impedia el seu ús en entorns de producció. Aquestes consideracions van motivar la present tesi, en què tota la investigació duta a terme té com a objectiu principal convertir rCUDA en una solució preparada per al seu ús entorns de producció, amb la finalitat de transferir-la eventualment a la indústria. La nova versió de rCUDA resultant d'aquest treball presenta una reducció de fins al 35% en el temps d'execució de les aplicacions analitzades respecte a la versió inicial. En comparació amb l'ús de GPUs locals, la sobrecàrrega d'aquesta nova versió de rCUDA és inferior al 5% per a les aplicacions estudiades quan s'utilitzen les últimes xarxes de computació d'altes prestacions disponibles.Reaño González, C. (2017). On the Enhancement of Remote GPU Virtualization in High Performance Clusters [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86219TESISPremios Extraordinarios de tesis doctorale

    Network Vortex: Distributed Virtual Memory for Streaming Applications

    Get PDF
    Explosive growth of the Internet, cluster computing, and storage technology has led to generation of enormous volumes of information and the need for scalable data computing. One of the central frameworks for such analysis is MapReduce, which is a programming platform for processing streaming data in external/distributed memory. Despite a significant public effort, open-source implementations of MapReduce (e.g., Hadoop, Spark) are complicated, bulky, and inefficient. To overcome this problem, we explore employing and expanding upon a recent a C/C++ programming abstraction called Vortex that offers a simple interface to the user, zero-copy operation, low RAM consumption, and high data throughput. In particular, this research examines algorithms and techniques for enabling Vortex operation over the network, including both TCP/IP sockets and data-link RDMA (e.g., InfiniBand) interfaces. We developed a new producer-consumer memory stream abstraction presented as a Vortex stream split across two hosts, travelling through a hidden network communication layer to provide the illusion of writing a continuous stream of data directly into a window of memory on a remote machine, thereby enabling the creation of high-performance networking code and size-agnostic data transport under appropriate circumstances written as simply as an in-memory copy operation, overcoming complications normally inherent in the discrete nature of network packet transfer. While the resulting product is highly workable over standard IP-based internet networks, the design limitations of RDMA technology in interfacing with virtual memory prove to make Vortex streams a suboptimal abstraction for this programming platform, as its central appeal of zero-copy network transfers are rendered largely inaccessible. Alternative algorithms to enhance RDMA performance with Vortex are proposed for future study
    corecore