20 research outputs found

    Mastering Uncertainty in Mechanical Engineering

    Get PDF
    This open access book reports on innovative methods, technologies and strategies for mastering uncertainty in technical systems. Despite the fact that current research on uncertainty is mainly focusing on uncertainty quantification and analysis, this book gives emphasis to innovative ways to master uncertainty in engineering design, production and product usage alike. It gathers authoritative contributions by more than 30 scientists reporting on years of research in the areas of engineering, applied mathematics and law, thus offering a timely, comprehensive and multidisciplinary account of theories and methods for quantifying data, model and structural uncertainty, and of fundamental strategies for mastering uncertainty. It covers key concepts such as robustness, flexibility and resilience in detail. All the described methods, technologies and strategies have been validated with the help of three technical systems, i.e. the Modular Active Spring-Damper System, the Active Air Spring and the 3D Servo Press, which have been in turn developed and tested during more than ten years of cooperative research. Overall, this book offers a timely, practice-oriented reference guide to graduate students, researchers and professionals dealing with uncertainty in the broad field of mechanical engineering

    Development, modelling and analysis of Vacuum Assisted Multipoint Moulding for manufacturing fibre-reinforced plastic composites

    Get PDF
    Full version: Access restricted permanently due to 3rd party copyright restrictions. Restriction set on 12.11.2019 by SE, Doctoral CollegeMultipoint tooling is a mould making technology that enables the rapid reconfiguration of a mould to create individual components. It replaces the commonly used, elaborately designed, and costly manufactured solid die, with an array of individually adjustable pins. These pins can be set to represent a large variety of freeform surfaces. An elastic interpolation layer (IPL) is used to smoothen the pin array and forms the actual tooling surface. This technology is well established in sheet metal forming and other areas of manufacturing. However, only little research has been conducted in the area of fibre-reinforced plastic composites. In this thesis, a novel multipoint tooling technology is introduced, that is specifically designed for fibre-reinforced plastic (FRP) manufacturing. Different to existing solutions, this Vacuum Assisted Multipoint Moulding (VAMM) is capable of creating concave and convex geometries on a single sided mould. This enables the use of established FRP manufacturing processes without further adaptation. Two iterations of this technology are developed: A manually adjusted small-scale test bench is used to validate the VAMM concept and conduct experiments on, and a fully automated full scale manufacturing prototype then is used to demonstrate the feasibility of the technology for an industrial application. The elasticity of the IPL introduces two system immanent dimensional defects: the overall shape deviates due to the deformation of the IPL and the punctual support of the interpolation layer leads to a golf-ball-like surface effect. A process model was created to predict behaviour of the VAMM tool and the interpolation layer, and estimate the expected part quality. An iterative shape control algorithm was implemented, to improve the dimensional accuracy of the manufacturing process, by readjusting individual pins in the tool. On this model, a sensitivity analysis was conducted to quantify the influence of the process and pin array parameters on the dimpling of the tool surface. The most important parameters were identified and used in a Metamodel of Optimal Prognosis (MOP). This MOP enables the rapid estimation of the system behaviour. It was used to optimise the VAMM process and the interpolation layer in order to maximise the geometric part quality. With this method two IPL designs, one with a single, and one with two separate layers of silicone rubber, were evaluated. It turned out that the dual layer configuration can handle a 24 % higher process pressure, while using a 9 % thinner interpolation layer, to produce parts similar to the single layer configuration.Huber Kunststoff und Technik GmbHSGL Carbon SEPutzin Maschinenbau Gmb

    Mechanical Engineering

    Get PDF
    The book substantially offers the latest progresses about the important topics of the "Mechanical Engineering" to readers. It includes twenty-eight excellent studies prepared using state-of-art methodologies by professional researchers from different countries. The sections in the book comprise of the following titles: power transmission system, manufacturing processes and system analysis, thermo-fluid systems, simulations and computer applications, and new approaches in mechanical engineering education and organization systems

    Design optimisation of cutting parameters for a class of radially-compliant spindles via virtual prototyping tools

    No full text
    Robotic deburring (RD) still requires long and delicate physical tests to tune the process-parameters, thus drastically reducing the robotic cell productivity. Henceforth, engineering methods and tools are needed to optimise the RD application within a virtual environment, replicating the real behaviour of the robot tooling under different process conditions, namely unpredictable variety of burr size/shape and limited accuracy of the robot motions. To this purpose, the spindle compliance, which plays a fundamental role, is unfortunately not evaluated by state-of-the-art simulation tools. The present paper proposes a virtual prototype (VP) of a radially-compliant spindle, suitable to assess and optimise the deburring efficiency in different case scenarios. A multi-body model of the spindle, integrated with the process behavioural model, predicts process forces and optimal deburring parameters, delivering the contour maps of the envisaged deburring error as function of feed rate and tool compliance. An industrial case-study is provided

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Dinamica degli organi rotanti: analisi, identificazione e controllo

    Get PDF
    Gli organi rotanti di macchinari moderni sono soggetti a velocità sempre più elevate e limiti vibratori sempre più ristretti. Gli strumenti per ridurre tali vibrazioni sono l’analisi e l’identificazione dei sistemi per un opportuno dimensionamento delle parti rotanti, e l’utilizzo di appropriati smorzatori. Elementi importanti nella dinamica dei rotori ma di difficile caratterizzazione sono i supporti. Il metodo identificativo delle funzioni modulanti è stato applicato all’identificazione dei coefficienti dinamici di cuscinetti idrodinamici. Sono stati ottenuti risultati incoraggianti sia dalle analisi numeriche che sperimentali. Inoltre è presentato il progetto di uno smorzatore magnetoreologico a “squeeze-film”. Sono stati condotti sia una analisi numerica che una campagna sperimentale. Poichè il coefficiente smorzante del cuscinetto può essere variato con continuità è stato possibile impostare le condizioni di funzionamento ottimo per ogni condizione operativa. Un controllore automatico è stato progettato con l’uso di logica Fuzzy e algoritmi genetici. Infine sono state studiate le vibrazioni di dischi sottili rotanti in presenza di attrito secco, problema molto complesso e molto sentito in vari ambiti industriali. Sono quindi presentati e discussi i risultati di un’indagine sperimentale condotta sia su un macchinario commerciale di una cartiera che su una attrezzatura sperimentale. È stata mostrata l’influeza di alcuni parametri sull’insorgere delle vibrazioni
    corecore