10 research outputs found

    AIMETA 2005. Atti del XVII Congresso dell'Associazione italiana di meccanica teorica e applicata. Firenze, 11-15 settembre 2005

    Get PDF
    The volume collects the contributions presented at the XVII national congress of AIMETA. The contributions are grouped according to the various sectors of theoretical and applied mechanics and are offered by a vast scientific community. In addition to the classical sectors, themes of interdisciplinary significance and of considerable interest and highly innovative content were added, for the analysis of which small exchange symposia were proposed. Organised according to 52 sessions (plenary and parallel), the volume contains 290 scientific works that are mainly the result of international cooperation. Therefore, the work represents a significant picture of the current situation and future prospects for mechanics

    Theoretical Approaches in Non-Linear Dynamical Systems

    Get PDF
    From Preface: The 15th International Conference „Dynamical Systems - Theory and Applications” (DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding scientists and engineers who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without great effort of the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz University of Technology. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our event was attended by over 180 researchers from 35 countries all over the world, who decided to share the results of their research and experience in different fields related to dynamical systems. This year, the DSTA Conference Proceedings were split into two volumes entitled „Theoretical Approaches in Non-Linear Dynamical Systems” and „Applicable Solutions in Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of Springer Proceedings in Mathematics and Statistics entitled „Control and Stability of Dynamical Systems”, „Mathematical and Numerical Approaches in Dynamical Systems” and „Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will be recommended to special issues of renowned scientific journals.Cover design: Kaźmierczak, MarekTechnical editor: Kaźmierczak, Mare

    15th Conference on Dynamical Systems Theory and Applications DSTA 2019 ABSTRACTS

    Get PDF
    From Preface: This is the fifteen time when the conference „Dynamical Systems – Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and the Ministry of Science and Higher Education. It is a great pleasure that our invitation has been accepted by so many people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcome nearly 255 persons from 47 countries all over the world. They decided to share the results of their research and many years experiences in the discipline of dynamical systems by submitting many very interesting papers. This booklet contains a collection of 338 abstracts, which have gained the acceptance of referees and have been qualified for publication in the conference edited books.Technical editor and cover design: Kaźmierczak, MarekCover design: Ogińska, Ewelina; Kaźmierczak, Mare

    Proceedings of the 4th International Conference on Innovations in Automation and Mechatronics Engineering (ICIAME2018)

    Get PDF
    The Mechatronics Department (Accredited by National Board of Accreditation, New Delhi, India) of the G H Patel College of Engineering and Technology, Gujarat, India arranged the 4th International Conference on Innovations in Automation and Mechatronics Engineering 2018, (ICIAME 2018) on 2-3 February 2018. The papers presented during the conference were based on Automation, Optimization, Computer Aided Design and Manufacturing, Nanotechnology, Solar Energy etc and are featured in this book

    磁性流体を用いたバックドライブ可能な油圧アクチュエータの開発

    Get PDF
    早大学位記番号:新7478早稲田大

    Soft Robotics: Design for Simplicity, Performance, and Robustness of Robots for Interaction with Humans.

    Get PDF
    This thesis deals with the design possibilities concerning the next generation of advanced Robots. Aim of the work is to study, analyse and realise artificial systems that are essentially simple, performing and robust and can live and coexist with humans. The main design guideline followed in doing so is the Soft Robotics Approach, that implies the design of systems with intrinsic mechanical compliance in their architecture. The first part of the thesis addresses design of new soft robotics actuators, or robotic muscles. At the beginning are provided information about what a robotic muscle is and what is needed to realise it. A possible classification of these systems is analysed and some criteria useful for their comparison are explained. After, a set of functional specifications and parameters is identified and defined, to characterise a specific subset of this kind of actuators, called Variable Stiffness Actuators. The selected parameters converge in a data-sheet that easily defines performance and abilities of the robotic system. A complete strategy for the design and realisation of this kind of system is provided, which takes into account their me- chanical morphology and architecture. As consequence of this, some new actuators are developed, validated and employed in the execution of complex experimental tasks. In particular the actuator VSA-Cube and its add-on, a Variable Damper, are developed as the main com- ponents of a robotics low-cost platform, called VSA-CubeBot, that v can be used as an exploratory platform for multi degrees of freedom experiments. Experimental validations and mathematical models of the system employed in multi degrees of freedom tasks (bimanual as- sembly and drawing on an uneven surface), are reported. The second part of the thesis is about the design of multi fingered hands for robots. In this part of the work the Pisa-IIT SoftHand is introduced. It is a novel robot hand prototype designed with the purpose of being as easily usable, robust and simple as an industrial gripper, while exhibiting a level of grasping versatility and an aspect comparable to that of the human hand. In the thesis the main theo- retical tool used to enable such simplification, i.e. the neuroscience– based notion of soft synergies, are briefly reviewed. The approach proposed rests on ideas coming from underactuated hand design. A synthesis method to realize a desired set of soft synergies through the principled design of adaptive underactuated mechanisms, which is called the method of adaptive synergies, is discussed. This ap- proach leads to the design of hands accommodating in principle an arbitrary number of soft synergies, as demonstrated in grasping and manipulation simulations and experiments with a prototype. As a particular instance of application of the method of adaptive syner- gies, the Pisa–IIT SoftHand is then described in detail. The design and implementation of the prototype hand are shown and its effec- tiveness demonstrated through grasping experiments. Finally, control of the Pisa/IIT Hand is considered. Few different control strategies are adopted, including an experimental setup with the use of surface Electromyographic signals

    A finite element approach for the implementation of magnetostrictive material terfenol-D in automotive CNG fuel injection actuation

    Get PDF
    Magnetostriction is the deformation that spontaneously occurs in ferromagnetic materials when an external magnetic field is applied. In applications broadly defined for actuation, magnetostrictive material Terfenol-D possesses intrinsic rapid response times while providing small and accurate displacements and high-energy efficiency, which are some of the essential parameters required for fast control of fuel injector valves for decreased engine emissions and lower fuel consumption compared with the traditional solenoid fuel injection system. A prototype CNG fuel injector assembly was designed, which primarily included magnetostrictive material Terfenol-D as the actuator material, 1020 Steel having soft magnetic properties as the injector housing material, AWG copper wire as the coil material and 316 Stainless Steel having non-magnetic properties as the plunger material. A 2D cross-sectional geometry including the injector housing, coil, Terfenol-D shaft, and plunger, was modeled in both Finite Element Method Magnetics (FEMM) and ANSYS for 2D axisymmetric magnetic simulation. The magnetic simulations were performed in order to determine the coil-circuit parameters and the magnetic field strength to achieve the required magnetostrictive strain, and consequently, the injector needle lift. The FEMM magnetic simulations were carried out with four different types of AWG coil wires and four different injector coil thicknesses in order to evaluate the relationship between the different coil types and thicknesses against the achieved strain or injector lift. Eventually, the optimized parameter obtained from FEMM results analysis was verified against ANSYS electromagnetic simulation. Subsequently, a three dimensional replica of the CNG flow conduit was modelled in GAMBIT with the resultant injector lift. The meshed conduit was then simulated in FLUENT using the 3D time independent segregated solver with standard k-ε, realizable k-ε and RSM turbulent models to predict the mass flow rate of CNG to be injected. Eventually, the simulated flow rates were verified against mathematically derived static flow rate required for a standard automotive fuel injector considering standard horsepower, BSFC and injector duty cycle

    Passive control of structures: experimental verification using tuned mass dampers

    Get PDF
    The focus of this thesis is to review and experimentally verify the effect of vibrational control systems applied in tall and flexible structures. The installation of these systems on new and existing structures aim at the spectacular improvement of the structural dynamic behavior under different types of manmade and ambient excitations on the concepts of structural safety and operational conditions. The control theory of this thesis is applied for the design of Passive Control Systems and more specifically for the design of Tuned Mass Damper (TMD) installed properly on the main structure. The main mass of the Tuned Mass Damper, which is named as secondary system, is significantly smaller than the main mass of the primary system which is a Single Degree of Freedom (SDOF) system. A series of experiments with one and two TMDs installed on a SDOF modeled small laboratory structure are designed, constructed and performed. The structural behavior of the laboratory structure was tested by subjecting to artificially induced harmonic excitation and one of the components available during the strong El Centro earthquake. The main modal characteristics of the combined primary-secondary system studied are the modal frequencies, the damping coefficients and the mass ratios between primary and secondary systems. A smart laboratory technique for damping improvement of structures was also employed to both primary and secondary systems and it is shown that sensibly contributes to vibration attenuation of the primary system. All the experimental concepts and results are discussed herein and demonstrate the effectiveness and reliability of Passive Control Systems installed on tall and flexible structures that are susceptible to strong winds and earthquake events
    corecore