415 research outputs found

    Micropower Design of an Energy Autonomous RF Tag for UWB Localization Applications

    Get PDF
    This paper describes the architecture and the micropower design criteria of a battery-less, energy autonomous, individually addressable RF tag for UWB localization applications, with a focus on baseband circuitry. The tag includes a UHF rectifier, power conversion and management circuits, an addressable wake-up radio module, a microcontroller-based control unit, and circuits for UWB localization. The proposed circuit is suitable for UWB localization either by using passive backscattering of received UWB pulses, or by using active UWB pulses generators. Power for operation is scavenged from a modulated UHF carrier also used for addressing purposes. The circuit is implemented on discrete components in a 3.12 cm2 PCB area. The circuit can wake-up from fully discharged states and operates at distances as high as 10.8 m from a 2W-ERP source in the UHF 865–868 MHz RFID band with a +1.8 dBi receiving antenna. The quiescent power consumption of the tag is 3.88 μW, and the average power consumption at an addressing and activation rate of one time per second is 4.7 μW. The effectiveness of UWB localization was tested in a localization system based on time-difference-of-arrival (TDOA) estimations, consisting of multiple UWB readers and UHF transmitters

    Hybrid RFID-Based System Using Active Two-Way Tags

    Get PDF
    Ultra High Frequency (UHF) Radio Frequency Identification (RFID) is a promising technology that has experienced tremendous growth by revolutionizing a variety of industry sectors and applications, such as automated data management, the tracking of a specified object, highway toll collection, library inventory tracking, multi-level asset tracking, and airport baggage control. For many RFID applications, it is desired to maximize the operating distance or read range. This thesis proposes a design of an analog front-end architecture and the baseband controller for a Class-4 Active Two-Way (C4-ATW) RFID tag in order to maximize or increase the tracking range by implementing a tag-hopping technique. In tag-hopping, C4-ATW RFID tags power their own communication with other C4-ATW RFID tags and existing passive RFID tag while the reader\u27s functionality remains unchanged. The simulation results indicate that the C4-ATW RFID tag can detect a minimum incident RF input power of -20 dBm at a 120 Kbps data rate. For -20 dBm input power; the achieved read range between a reader and tag is 36.7 meters at 4 W of reader power and between two tags, the read range is 2.15 meters at 25 mW tag power. Combined, the analog front end and baseband controller consume 50.3 mW of power and the area of the chip, including pads, is 854 µm x 542 µm

    Target Read Operation of Passive Ultra High Frequency RFID Tag in a Multiple Tags Environment

    Get PDF
    Passive ultra-high frequency (UHF) radio frequency Identification (RFID) has emerged as a promising solution for many industrial applications. Passive UHF systems are relatively inexpensive to implement and monitor, as no line of sight is required for the communication. There are several advantages to using a passive RFID system. For example, no internal power source is required to activate the tags, and lower labor costs and efficient multitasking operations are expected in a long term scenario. However, due to factors such as tag-to-tag interference and inaccurate localization, RFID tags that are closely spaced together are difficult to detect and program accurately with unique identifiers. This thesis investigates two main ways to enable and improve multi-tag operations: physical tag placement and design of the near-field RFID reader antenna. First, several factors that affect the ability to encode a specific tag with unique information in the presence of other tags are investigated, such as reader power level, tag-to-antenna distance, tag-to-tag distance and tag orientation. A Full Factorial Design is carried out to study the effects of each of the factors and factor interactions. Results suggest a preliminary minimum tag-to-tag spacing which enables the maximum number of tagged items to be uniquely encoded without interference. In order to individually read each tag in a multi-tag form, an experimental device is built to enable controlled movement and positioning of the reader’s antenna to the location of each of the tags. The experimental device is also designed to test other mechanical means of isolating the tags, such as shielding and mechanical isolation of the tagged media. Furthermore, to test a second method of improving the efficacy of programming tags uniquely in a multi-tag environment, the reader’s antenna is redesigned to confine the electromagnetic field distribution to reduce the probability of activating non-targeted tags in the surrounding. Using the commercial software package ANSYS High Frequency Structural Solver (HFSS), the coupling interaction between the reader’s antenna and RFID tags was simulated to investigate the relative voltage induced in the target tag relative to each of the proximal tags. The new antenna is then fabricated and validated with the simulation results. With a better antenna design and ideals tag placement, the read operation of multiple tags can be improved and made more reliable. These findings can potentially expedite the process of field programming in item-level tagging and increase the throughput rate of unique tag encoding

    Dense and long-term monitoring of Earth surface processes with passive RFID -- a review

    Full text link
    Billions of Radio-Frequency Identification (RFID) passive tags are produced yearly to identify goods remotely. New research and business applications are continuously arising, including recently localization and sensing to monitor earth surface processes. Indeed, passive tags can cost 10 to 100 times less than wireless sensors networks and require little maintenance, facilitating years-long monitoring with ten's to thousands of tags. This study reviews the existing and potential applications of RFID in geosciences. The most mature application today is the study of coarse sediment transport in rivers or coastal environments, using tags placed into pebbles. More recently, tag localization was used to monitor landslide displacement, with a centimetric accuracy. Sensing tags were used to detect a displacement threshold on unstable rocks, to monitor the soil moisture or temperature, and to monitor the snowpack temperature and snow water equivalent. RFID sensors, available today, could monitor other parameters, such as the vibration of structures, the tilt of unstable boulders, the strain of a material, or the salinity of water. Key challenges for using RFID monitoring more broadly in geosciences include the use of ground and aerial vehicles to collect data or localize tags, the increase in reading range and duration, the ability to use tags placed under ground, snow, water or vegetation, and the optimization of economical and environmental cost. As a pattern, passive RFID could fill a gap between wireless sensor networks and manual measurements, to collect data efficiently over large areas, during several years, at high spatial density and moderate cost.Comment: Invited paper for Earth Science Reviews. 50 pages without references. 31 figures. 8 table

    Sensores passivos alimentados por transmissão de energia sem fios para aplicações de Internet das coisas

    Get PDF
    Nowadays, the Wireless Sensor Networks (WSNs) depend on the battery duration of the sensors and there is a renewed interest in creating a passive sensor network scheme in the area of Internet of Things (IoT) and space oriented WSN systems. The challenges for the future of radio communications have a twofold evolution, one being the low power consumption and, another, the adaptability and intelligent use of the available resources. Specially designed radios should be used to reduce power consumption, and adapt to the environment in a smart and e cient way. This thesis will focus on the development of passive sensors based on low power communication (backscatter) with Wireless Power Transfer (WPT) capabilities used in IoT applications. In that sense, several high order modulations for the communication will be explored and proposed in order to increase the data rate. Moreover, the sensors need to be small and cost e ective in order to be embedded in other technologies or devices. Consequently, the RF front-end of the sensors will be designed and implemented in Monolithic Microwave Integrated Circuit (MMIC).Atualmente, as redes de sensores sem fios dependem da duração da bateria e,deste modo, existe um interesse renovado em criar um esquema de rede de sensores passivos na área de internet das coisas e sistemas de redes de sensores sem fios relacionados com o espaço. Os desafios do futuro das comunicações de rádio têm uma dupla evolução, sendo um o baixo consumo de energia e, outro, a adaptação e o uso inteligente dos recursos disponíveis. Rádios diferentes dos convencionais devem ser usados para reduzir o consumo de energia e devem adaptar-se ao ambiente de forma inteligente e eficiente, de modo a que este use a menor quantidade de energia possível para estabelecer a comunicação. Esta tese incide sobre o desenvolvimento de sensores passivos baseados em comunicação de baixo consumo energético (backscatter) com recurso a transmissão de energia sem fios de modo a que possam ser usados em diferentes aplicações inseridas na internet das coisas. Nesse sentido, várias modulações de alta ordem para a comunicação backscatter serão exploradas e propostas com o objectivo de aumentar a taxa de transmissão de dados. Além disso, os sensores precisam de ser reduzidos em tamanho e económicos de modo a serem incorporados em outras tecnologias ou dispositivos. Consequentemente, o front-end de rádio frequência dos sensores será projetado e implementado em circuito integrado de microondas monolítico.Programa Doutoral em Engenharia Eletrotécnic

    SaunterNot -- A Personal Security System for Nursing Home Patients

    Get PDF
    With Nursing home facilities enduring staff shortages, the SaunterNot system would provide a safe and efficient way of alerting the staff if a patient suffering from a neurological disease is attempting to exit the building. Each patient who is examined and found likely to be at risk of wandering out of the building into what may become hazardous situations will be asked to wear a transponder tag. Each tag is encoded with an 8-bit identification number which is cross-referenced to their identity. When passing through a door that exits the building, a reader placed at the door will receive a signal from the transponder and trigger an alarm to alert the staff of the resident exiting the building

    Using CDMA as Anti-Collision Method for RFID - Research & Applications

    Get PDF

    Leveraging Backscatter for Ultra-low Power Wireless Sensing Systems

    Get PDF
    The past few years have seen a dramatic growth in wireless sensing systems, with millions of wirelessly connected sensors becoming first-class citizens of the Internet. The number of wireless sensing devices is expected to surpass 6.75 billion by 2017, more than the world\u27s population as well as the combined market of smartphones, tablets, and PCs. However, its growth faces two pressing challenges: battery energy density and wireless radio power consumption. Battery energy density looms as a fundamental limiting factor due to slow improvements over the past several decades (3x over 22 years). Wireless radio power consumption is another key challenge because high-speed wireless communication is often far more expensive energy-wise than computation, storage and sensing. To make matters worse, wireless sensing devices are generating an increasing amount of data. These challenges raise a fundamental question --- how should we power and communicate with wireless sensing devices. More specifically, instead of using batteries, can we leverage other energy sources to reduce, if not eliminate, the dependence on batteries? Similarly, instead of optimizing existing wireless radios, can we fundamentally change how radios transmit wireless signals to achieve lower power consumption? A promising technique to address these questions is backscatter --- a primitive that enables RF energy harvesting and ultra-low-power wireless communication. Backscatter has the potential to reduce dependence on batteries because it can obtain energy by rectifying the wireless signals transmitted by a backscatter reader. Backscatter can also work by reflecting existing wireless signals (WiFi, BLE) when these are available nearby. Because signal reflection only consumes uWs of power, backscatter can enable ultra-low-power wireless communication. However, the use of backscatter for communicating with wireless sensing devices presents several challenges. First, decreasing RF power across distance limits the operational range of micro-powered backscatter devices. This raises the question of how to maintain a communication link with a backscatter device despite tiny amount of harvested power. Second, even though the backscatter RF front-end is extremely power-efficient, the computational and sensing overhead on backscatter sensors limit its ability to operate with a few micro-Watts of power. Such overhead is a negligible factor of overall power consumption for platforms where radio power consumption is high (e.g. WiFi or Bluetooth based devices). However, it becomes the bottleneck for backscatter based platforms. Third, backscatter readers are not currently deployed in existing indoor environments to provide a continuous carrier for carrying backscattered information. As a result, backscatter deployment is not yet widespread. This thesis addresses these challenges by making the following contributions. First, we design a network stack that enables continuous operation despite decreasing harvested power across distance by employing an OS abstraction --- task fragmentation. We show that such a network stack enables packet transfer even when the whole system is powered by a 3cmx3cm solar panel under natural indoor light condition. Second, we design a hardware architecture that minimizes the computational overhead of backscatter to enable over 1Mbps backscatter transmission while consuming less than 100uWs of power, a two order of magnitude improvement over the state-of-the-art. Finally, we design a system that can leverage both ambient WiFi and BLE signals for backscatter. Our empirical evaluation shows that we can backscatter 500bps data on top of a WiFi stream and 50kbps data on top of a Bluetooth stream when the backscatter device is 3m away from the commercial WiFi and Bluetooth receivers
    corecore