153 research outputs found

    Waveform Design for 5G and beyond Systems

    Get PDF
    5G traffic has very diverse requirements with respect to data rate, delay, and reliability. The concept of using multiple OFDM numerologies adopted in the 5G NR standard will likely meet these multiple requirements to some extent. However, the traffic is radically accruing different characteristics and requirements when compared with the initial stage of 5G, which focused mainly on high-speed multimedia data applications. For instance, applications such as vehicular communications and robotics control require a highly reliable and ultra-low delay. In addition, various emerging M2M applications have sparse traffic with a small amount of data to be delivered. The state-of-the-art OFDM technique has some limitations when addressing the aforementioned requirements at the same time. Meanwhile, numerous waveform alternatives, such as FBMC, GFDM, and UFMC, have been explored. They also have their own pros and cons due to their intrinsic waveform properties. Hence, it is the opportune moment to come up with modification/variations/combinations to the aforementioned techniques or a new waveform design for 5G systems and beyond. The aim of this Special Issue is to provide the latest research and advances in the field of waveform design for 5G systems and beyond

    Estimation of LPC coefficients using Evolutionary Algorithms

    Get PDF
    The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV). In this method, evolutionary algorithms try to find the LPC coefficients which can predict the origi-nal signal with minimum prediction error. To this end, the fitness function is defined as the maximum prediction error in all evolutionary algorithms. The coefficients computed by these algorithms compared to coefficients obtained by traditional autocorrelation method in term of prediction accuracy. Our results showed that coefficients obtained by evolutionary algorithms predict the original signal with less prediction error than autocorrelation methods. The maximum prediction error achieved by autocorrelation method, GA, PSO, DE and PSO-DV are 0.35, 0.06, 0.02, 0.07 and 0.001, respectively. This shows that the hybrid algorithm, PSO-DV, is superior to other algorithms in computing linear prediction coefficients

    Optimal ECG Signal Denoising Using DWT with Enhanced African Vulture Optimization

    Get PDF
    Cardiovascular diseases (CVDs) are the world's leading cause of death; therefore cardiac health of the human heart has been a fascinating topic for decades. The electrocardiogram (ECG) signal is a comprehensive non-invasive method for determining cardiac health. Various health practitioners use the ECG signal to ascertain critical information about the human heart. In this paper, the noisy ECG signal is denoised based on Discrete Wavelet Transform (DWT) optimized with the Enhanced African Vulture Optimization (AVO) algorithm and adaptive switching mean filter (ASMF) is proposed. Initially, the input ECG signals are obtained from the MIT-BIH ARR dataset and white Gaussian noise is added to the obtained ECG signals. Then the corrupted ECG signals are denoised using Discrete Wavelet Transform (DWT) in which the threshold is optimized with an Enhanced African Vulture Optimization (AVO) algorithm to obtain the optimum threshold. The AVO algorithm is enhanced by Whale Optimization Algorithm (WOA). Additionally, ASMF is tuned by the Enhanced AVO algorithm. The experiments are conducted on the MIT-BIH dataset and the proposed filter built using the EAVO algorithm, attains a significant enhancement in reliable parameters, according to the testing results in terms of SNR, mean difference (MD), mean square error (MSE), normalized root mean squared error (NRMSE), peak reconstruction error (PRE), maximum error (ME), and normalized root mean error (NRME) with existing algorithms namely, PSO, AOA, MVO, etc

    Neural-Kalman Schemes for Non-Stationary Channel Tracking and Learning

    Get PDF
    This Thesis focuses on channel tracking in Orthogonal Frequency-Division Multiplexing (OFDM), a widely-used method of data transmission in wireless communications, when abrupt changes occur in the channel. In highly mobile applications, new dynamics appear that might make channel tracking non-stationary, e.g. channels might vary with location, and location rapidly varies with time. Simple examples might be the di erent channel dynamics a train receiver faces when it is close to a station vs. crossing a bridge vs. entering a tunnel, or a car receiver in a route that grows more tra c-dense. Some of these dynamics can be modelled as channel taps dying or being reborn, and so tap birth-death detection is of the essence. In order to improve the quality of communications, we delved into mathematical methods to detect such abrupt changes in the channel, such as the mathematical areas of Sequential Analysis/ Abrupt Change Detection and Random Set Theory (RST), as well as the engineering advances in Neural Network schemes. This knowledge helped us nd a solution to the problem of abrupt change detection by informing and inspiring the creation of low-complexity implementations for real-world channel tracking. In particular, two such novel trackers were created: the Simpli- ed Maximum A Posteriori (SMAP) and the Neural-Network-switched Kalman Filtering (NNKF) schemes. The SMAP is a computationally inexpensive, threshold-based abrupt-change detector. It applies the three following heuristics for tap birth-death detection: a) detect death if the tap gain jumps into approximately zero (memoryless detection); b) detect death if the tap gain has slowly converged into approximately zero (memory detection); c) detect birth if the tap gain is far from zero. The precise parameters for these three simple rules can be approximated with simple theoretical derivations and then ne-tuned through extensive simulations. The status detector for each tap using only these three computationally inexpensive threshold comparisons achieves an error reduction matching that of a close-to-perfect path death/birth detection, as shown in simulations. This estimator was shown to greatly reduce channel tracking error in the target Signal-to-Noise Ratio (SNR) range at a very small computational cost, thus outperforming previously known systems. The underlying RST framework for the SMAP was then extended to combined death/birth and SNR detection when SNR is dynamical and may drift. We analyzed how di erent quasi-ideal SNR detectors a ect the SMAP-enhanced Kalman tracker's performance. Simulations showed SMAP is robust to SNR drift in simulations, although it was also shown to bene t from an accurate SNR detection. The core idea behind the second novel tracker, NNKFs, is similar to the SMAP, but now the tap birth/death detection will be performed via an arti cial neuronal network (NN). Simulations show that the proposed NNKF estimator provides extremely good performance, practically identical to a detector with 100% accuracy. These proposed Neural-Kalman schemes can work as novel trackers for multipath channels, since they are robust to wide variations in the probabilities of tap birth and death. Such robustness suggests a single, low-complexity NNKF could be reusable over di erent tap indices and communication environments. Furthermore, a di erent kind of abrupt change was proposed and analyzed: energy shifts from one channel tap to adjacent taps (partial tap lateral hops). This Thesis also discusses how to model, detect and track such changes, providing a geometric justi cation for this and additional non-stationary dynamics in vehicular situations, such as road scenarios where re ections on trucks and vans are involved, or the visual appearance/disappearance of drone swarms. An extensive literature review of empirically-backed abrupt-change dynamics in channel modelling/measuring campaigns is included. For this generalized framework of abrupt channel changes that includes partial tap lateral hopping, a neural detector for lateral hops with large energy transfers is introduced. Simulation results suggest the proposed NN architecture might be a feasible lateral hop detector, suitable for integration in NNKF schemes. Finally, the newly found understanding of abrupt changes and the interactions between Kalman lters and neural networks is leveraged to analyze the neural consequences of abrupt changes and brie y sketch a novel, abrupt-change-derived stochastic model for neural intelligence, extract some neuro nancial consequences of unstereotyped abrupt dynamics, and propose a new portfolio-building mechanism in nance: Highly Leveraged Abrupt Bets Against Failing Experts (HLABAFEOs). Some communication-engineering-relevant topics, such as a Bayesian stochastic stereotyper for hopping Linear Gauss-Markov (LGM) models, are discussed in the process. The forecasting problem in the presence of expert disagreements is illustrated with a hopping LGM model and a novel structure for a Bayesian stereotyper is introduced that might eventually solve such problems through bio-inspired, neuroscienti cally-backed mechanisms, like dreaming and surprise (biological Neural-Kalman). A generalized framework for abrupt changes and expert disagreements was introduced with the novel concept of Neural-Kalman Phenomena. This Thesis suggests mathematical (Neural-Kalman Problem Category Conjecture), neuro-evolutionary and social reasons why Neural-Kalman Phenomena might exist and found signi cant evidence for their existence in the areas of neuroscience and nance. Apart from providing speci c examples, practical guidelines and historical (out)performance for some HLABAFEO investing portfolios, this multidisciplinary research suggests that a Neural- Kalman architecture for ever granular stereotyping providing a practical solution for continual learning in the presence of unstereotyped abrupt dynamics would be extremely useful in communications and other continual learning tasks.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Luis Castedo Ribas.- Secretaria: Ana García Armada.- Vocal: José Antonio Portilla Figuera

    Electromagnetic Field Manipulation: Biosensing to Antennas

    Get PDF
    We will explore how understanding and controlling electromagnetic fields can provide significant impact across a multitude of applications throughout the whole frequency spectrum from DC to daylight. Starting from the DC end of the electromagnetic spectrum, we motivate the design of a new integrated magnetic biosensing design as well as various improvements to the initial design based on spatial and temporal manipulations of the magnetic fields. Next, we look into the RF domain and develop maximal performance bounds for antennas and other electromagnetic structures. We develop rapid simulation techniques which when coupled with heuristic optimization algorithms can quickly and effectively produce new antenna structures with little to no manual intervention. We demonstrate the efficacy of these techniques in the context of on-chip antenna designs and a 3D printed coupling antenna for a dielectric waveguide communication link. We present the design of a 120GHz dual-channel 100Gbps QPSK/64QAM transceiver IC developed in a standard 28nm bulk CMOS process. Finally, we explore the higher THz regime in the context of photonic device optimization. We optimize compact photonic multiplexer devices which are fabricated in a standard foundry process and evaluate their performance against simulation results

    Development of new array signal processing techniques using swarm intelligence

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2010.Thesis (Ph. D.) -- Bilkent University, 2010.Includes bibliographical references leaves 144-158.In this thesis, novel array signal processing techniques are proposed for identifi- cation of multipath communication channels based on cross ambiguity function (CAF) calculation, swarm intelligence and compressed sensing (CS) theory. First technique detects the presence of multipath components by integrating CAFs of each antenna output in the array and iteratively estimates direction-of-arrivals (DOAs), time delays and Doppler shifts of a known waveform. Second technique called particle swarm optimization-cross ambiguity function (PSO-CAF) makes use of the CAF calculation to transform the received antenna array outputs to delay-Doppler domain for efficient exploitation of the delay-Doppler diversity of the multipath components. Clusters of multipath components are identified by using a simple amplitude thresholding in the delay-Doppler domain. PSO is used to estimate parameters of the multipath components in each cluster. Third proposed technique combines CS theory, swarm intelligence and CAF computation. Performance of standard CS formulations based on discretization of the multipath channel parameter space degrade significantly when the actual channel parameters deviate from the assumed discrete set of values. To alleviate this “off-grid”problem, a novel technique by making use of the PSO, that can also be used in applications other than the multipath channel identification is proposed. Performances of the proposed techniques are verified both on sythetic and real data.Güldoğan, Mehmet BurakPh.D

    MATLAB

    Get PDF
    A well-known statement says that the PID controller is the "bread and butter" of the control engineer. This is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that MATLAB is the "bread" in the above statement. MATLAB has became a de facto tool for the modern system engineer. This book is written for both engineering students, as well as for practicing engineers. The wide range of applications in which MATLAB is the working framework, shows that it is a powerful, comprehensive and easy-to-use environment for performing technical computations. The book includes various excellent applications in which MATLAB is employed: from pure algebraic computations to data acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user interface design for educational purposes to Simulink embedded systems

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research

    Automated Classification for Electrophysiological Data: Machine Learning Approaches for Disease Detection and Emotion Recognition

    Get PDF
    Smart healthcare is a health service system that utilizes technologies, e.g., artificial intelligence and big data, to alleviate the pressures on healthcare systems. Much recent research has focused on the automatic disease diagnosis and recognition and, typically, our research pays attention on automatic classifications for electrophysiological signals, which are measurements of the electrical activity. Specifically, for electrocardiogram (ECG) and electroencephalogram (EEG) data, we develop a series of algorithms for automatic cardiovascular disease (CVD) classification, emotion recognition and seizure detection. With the ECG signals obtained from wearable devices, the candidate developed novel signal processing and machine learning method for continuous monitoring of heart conditions. Compared to the traditional methods based on the devices at clinical settings, the developed method in this thesis is much more convenient to use. To identify arrhythmia patterns from the noisy ECG signals obtained through the wearable devices, CNN and LSTM are used, and a wavelet-based CNN is proposed to enhance the performance. An emotion recognition method with a single channel ECG is developed, where a novel exploitative and explorative GWO-SVM algorithm is proposed to achieve high performance emotion classification. The attractive part is that the proposed algorithm has the capability to learn the SVM hyperparameters automatically, and it can prevent the algorithm from falling into local solutions, thereby achieving better performance than existing algorithms. A novel EEG-signal based seizure detector is developed, where the EEG signals are transformed to the spectral-temporal domain, so that the dimension of the input features to the CNN can be significantly reduced, while the detector can still achieve superior detection performance
    corecore