218 research outputs found

    Architecting the cyberinfrastructure for National Science Foundation Ocean Observatories Initiative (OOI)

    Get PDF
    The NSF Ocean Observatories Initiative (OOI) is a networked ocean research observatory with arrays of instrumented water column moorings and buoys, profilers, gliders and autonomous underwater vehicles (AUV) within different open ocean and coastal regions. OOI infrastructure also includes a cabled array of instrumented seafloor platforms and water column moorings on the Juan de Fuca tectonic plate. This networked system of instruments, moored and mobile platforms, and arrays will provide ocean scientists, educators and the public the means to collect sustained, time-series data sets that will enable examination of complex, interlinked physical, chemical, biological, and geological processes operating throughout the coastal regions and open ocean. The seven arrays built and deployed during construction support the core set of OOI multidisciplinary scientific instruments that are integrated into a networked software system that will process, distribute, and store all acquired data. The OOI has been built with an expectation of operation for 25 years.Peer Reviewe

    WSN Deployments:Designing with Patterns

    Get PDF

    Cybersecurity for Manufacturers: Securing the Digitized and Connected Factory

    Full text link
    As manufacturing becomes increasingly digitized and data-driven, manufacturers will find themselves at serious risk. Although there has yet to be a major successful cyberattack on a U.S. manufacturing operation, threats continue to rise. The complexities of multi-organizational dependencies and data-management in modern supply chains mean that vulnerabilities are multiplying. There is widespread agreement among manufacturers, government agencies, cybersecurity firms, and leading academic computer science departments that U.S. industrial firms are doing too little to address these looming challenges. Unfortunately, manufacturers in general do not see themselves to be at particular risk. This lack of recognition of the threat may represent the greatest risk of cybersecurity failure for manufacturers. Public and private stakeholders must act before a significant attack on U.S. manufacturers provides a wake-up call. Cybersecurity for the manufacturing supply chain is a particularly serious need. Manufacturing supply chains are connected, integrated, and interdependent; security of the entire supply chain depends on security at the local factory level. Increasing digitization in manufacturing— especially with the rise of Digital Manufacturing, Smart Manufacturing, the Smart Factory, and Industry 4.0, combined with broader market trends such as the Internet of Things (IoT)— exponentially increases connectedness. At the same time, the diversity of manufacturers—from large, sophisticated corporations to small job shops—creates weakest-link vulnerabilities that can be addressed most effectively by public-private partnerships. Experts consulted in the development of this report called for more holistic thinking in industrial cybersecurity: improvements to technologies, management practices, workforce training, and learning processes that span units and supply chains. Solving the emerging security challenges will require commitment to continuous improvement, as well as investments in research and development (R&D) and threat-awareness initiatives. This holistic thinking should be applied across interoperating units and supply chains.National Science Foundation, Grant No. 1552534https://deepblue.lib.umich.edu/bitstream/2027.42/145442/1/MForesight_CybersecurityReport_Web.pd

    A Systems Architectural Model for Man-Packable/Operable Intelligence, Surveillance, and Reconnaissance Mini/Micro Aerial Vehicles

    Get PDF
    With the increase in both technology push and operational pull of mini/micro aerial vehicles (MAVs) within DoD organizations, an understanding of their interactions and capabilities is necessary. Many MAVs have already been developed for a specific usage and much speculation has been made on their future uses. Despite the growth of MAVs, there is currently no overarching systems architecture which would envelop and guide the DoD\u27s MAV development efforts. The goal of this thesis is to apply sound systems engineering principals to develop a MAV architectural model describing their use in three separate but closely related mission areas: Over-the-Hill-Reconnaissance, Battle Damage Information, and Local Area Defense. This thesis focuses on single-man packable/operable MAVs utilized by small ground units synonymous with special operations forces. The three mission areas are combined to define a single overarching Intelligence, Surveillance, and Reconnaissance (ISR) MAV architecture. This architecture focuses on the current state of ISR MAVs and provides a baseline current capability. From this architecture, areas of interest relating to MAVs and their use in the DoD are discussed, focusing on enhancing both current and future capabilities of MAVs

    Development of Advanced Verification and Validation Procedures and Tools for the Certification of Learning Systems in Aerospace Applications

    Get PDF
    Adaptive control technologies that incorporate learning algorithms have been proposed to enable automatic flight control and vehicle recovery, autonomous flight, and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments. In order for adaptive control systems to be used in safety-critical aerospace applications, they must be proven to be highly safe and reliable. Rigorous methods for adaptive software verification and validation must be developed to ensure that control system software failures will not occur. Of central importance in this regard is the need to establish reliable methods that guarantee convergent learning, rapid convergence (learning) rate, and algorithm stability. This paper presents the major problems of adaptive control systems that use learning to improve performance. The paper then presents the major procedures and tools presently developed or currently being developed to enable the verification, validation, and ultimate certification of these adaptive control systems. These technologies include the application of automated program analysis methods, techniques to improve the learning process, analytical methods to verify stability, methods to automatically synthesize code, simulation and test methods, and tools to provide on-line software assurance

    Towards an Expert System for the Analysis of Computer Aided Human Performance

    Get PDF
    • …
    corecore