291 research outputs found

    Parallelization of dynamic programming recurrences in computational biology

    Get PDF
    The rapid growth of biosequence databases over the last decade has led to a performance bottleneck in the applications analyzing them. In particular, over the last five years DNA sequencing capacity of next-generation sequencers has been doubling every six months as costs have plummeted. The data produced by these sequencers is overwhelming traditional compute systems. We believe that in the future compute performance, not sequencing, will become the bottleneck in advancing genome science. In this work, we investigate novel computing platforms to accelerate dynamic programming algorithms, which are popular in bioinformatics workloads. We study algorithm-specific hardware architectures that exploit fine-grained parallelism in dynamic programming kernels using field-programmable gate arrays: FPGAs). We advocate a high-level synthesis approach, using the recurrence equation abstraction to represent dynamic programming and polyhedral analysis to exploit parallelism. We suggest a novel technique within the polyhedral model to optimize for throughput by pipelining independent computations on an array. This design technique improves on the state of the art, which builds latency-optimal arrays. We also suggest a method to dynamically switch between a family of designs using FPGA reconfiguration to achieve a significant performance boost. We have used polyhedral methods to parallelize the Nussinov RNA folding algorithm to build a family of accelerators that can trade resources for parallelism and are between 15-130x faster than a modern dual core CPU implementation. A Zuker RNA folding accelerator we built on a single workstation with four Xilinx Virtex 4 FPGAs outperforms 198 3 GHz Intel Core 2 Duo processors. Furthermore, our design running on a single FPGA is an order of magnitude faster than competing implementations on similar-generation FPGAs and graphics processors. Our work is a step toward the goal of automated synthesis of hardware accelerators for dynamic programming algorithms

    Lightweight Massively Parallel Suffix Array Construction

    Get PDF
    The suffix array is an array of sorted suffixes in lexicographic order, where each sorted suffix is represented by its starting position in the input string. It is a fundamental data structure that finds various applications in areas such as string processing, text indexing, data compression, computational biology, and many more. Over the last three decades, researchers have proposed a broad spectrum of suffix array construction algorithms (SACAs). However, the majority of SACAs were implemented using sequential and parallel programming models. The maturity of GPU programming opened doors to the development of massively parallel GPU SACAs that outperform the fastest versions of suffix sorting algorithms optimized for the CPU parallel computing. Over the last five years, several GPU SACA approaches were proposed and implemented. They prioritized the running time over lightweight design. In this thesis, we design and implement a lightweight massively parallel SACA on the GPU using the prefix-doubling technique. Our prefix-doubling implementation is memory-efficient and can successfully construct the suffix array for input strings as large as 640 megabytes (MB) on Tesla P100 GPU. On large datasets, our implementation achieves a speedup of 7-16x over the fastest, highly optimized, OpenMP-accelerated suffix array constructor, libdivsufsort, that leverages the CPU shared memory parallelism. The performance of our algorithm relies on several high-performance parallel primitives such as radix sort, conditional filtering, inclusive prefix sum, random memory scattering, and segmented sort. We evaluate the performance of our implementation over a variety of real-world datasets with respect to its runtime, throughput, memory usage, and scalability. We compare our results against libdivsufsort that we run on a Haswell compute node equipped with 24 cores. Our GPU SACA is simple and compact, consisting of less than 300 lines of readable and effective source code. Additionally, we design and implement a fast and lightweight algorithm for checking the correctness of the suffix array

    A functional approach to heterogeneous computing in embedded systems

    Get PDF
    Developing programs for embedded systems presents quite a challenge; not only should programs be resource efficient, as they operate under memory and timing constraints, but they should also take full advantage of the hardware to achieve maximum performance. Since performance is such a significant factor in the design of embedded systems, modern systems typically incorporate more than one kind of processing element to benefit from specialized processing capabilities. For such heterogeneous systems the challenge in developing programs is even greater.In this thesis we explore a functional approach to heterogeneous system development as a means to address many of the modularity problems that are typically found in the application of low-level imperative programming for embedded systems. In particular, we explore a staged hardware software co-design language that we name Co-Feldspar and embed in Haskell. The staged approach enables designers to build their applications from reusable components and skeletons while retaining control over much of the generated source code. Furthermore, by embedding the language in Haskell we can exploit its type classes to write not only hardware and software programs, but also generic programs with overloaded instructions and expressions. We demonstrate the usefulness of the functional approach for co-design on a cryptographic example and signal processing filters, and benchmark software and mixed hardware-software implementations. Co-Feldspar currently adopts a monadic interface, which provides an imperative functional programming style that is suitable for explicit memory management and algorithms that rely on a certain evaluation order. For algorithms that are better defined as pure functions operating on immutable values, we provide a signal and array library that extends a monadic language, like Co-Feldspar. These extensions permit a functional style of programming by composing high-level combinators. Our compiler transforms such high-level code into efficient programs with mutating code. In particular, we show how to execute an FFT safely in-place, and how to describe a FIR and IIR filter efficiently as streams. Co-Feldspar’s monadic interface is however quite invasive; not only is the burden of explicit memory management quite heavy on the user, it is also quite easy to shoot on eself in the foot. It is for these reasons that we also explore a dynamic memory management discipline that is based on regions but predictable enough to be of use for embedded systems. Specifically, this thesis introduces a program analysis which annotates values with dynamically allocated memory regions. By limiting our efforts to functional languages that target embedded software, we manage to define a region inference algorithm that is considerably simpler than traditional approaches

    The Parallelism Motifs of Genomic Data Analysis

    Get PDF
    Genomic data sets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share this data with the research community, but some of these genomic data analysis problems require large scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high end parallel systems today and place different requirements on programming support, software libraries, and parallel architectural design. For example, they involve irregular communication patterns such as asynchronous updates to shared data structures. We consider several problems in high performance genomics analysis, including alignment, profiling, clustering, and assembly for both single genomes and metagenomes. We identify some of the common computational patterns or motifs that help inform parallelization strategies and compare our motifs to some of the established lists, arguing that at least two key patterns, sorting and hashing, are missing

    SEER: Super-Optimization Explorer for HLS using E-graph Rewriting with MLIR

    Full text link
    High-level synthesis (HLS) is a process that automatically translates a software program in a high-level language into a low-level hardware description. However, the hardware designs produced by HLS tools still suffer from a significant performance gap compared to manual implementations. This is because the input HLS programs must still be written using hardware design principles. Existing techniques either leave the program source unchanged or perform a fixed sequence of source transformation passes, potentially missing opportunities to find the optimal design. We propose a super-optimization approach for HLS that automatically rewrites an arbitrary software program into efficient HLS code that can be used to generate an optimized hardware design. We developed a toolflow named SEER, based on the e-graph data structure, to efficiently explore equivalent implementations of a program at scale. SEER provides an extensible framework, orchestrating existing software compiler passes and hardware synthesis optimizers. Our work is the first attempt to exploit e-graph rewriting for large software compiler frameworks, such as MLIR. Across a set of open-source benchmarks, we show that SEER achieves up to 38x the performance within 1.4x the area of the original program. Via an Intel-provided case study, SEER demonstrates the potential to outperform manually optimized designs produced by hardware experts
    • …
    corecore