9,484 research outputs found

    SISTEM KONTROL SUDUT PITCH BILAH TURBIN ANGIN MENGGUNAKAN LOGIKA FUZZY UNTUK VARIABLE SPEED VERTICAL AXIS WIND TURBINE (VAWT)

    Get PDF
    VAWT (Vertical Axis Wind Turbine) is a turbine that has an upright mechanical structure with its blades rotating toward a perpendicular z-axis. Based on the experimental results, it is found that there is a relationship between the rotational speed of turbine that rotates generator with the output voltage and power. Thus, it is necessary to control the wind turbine speed so it can rotate according to the set point to be achieved. The contribution of this research is the development of a Fuzzy logic-based control system to control the speed of VAWT turbine where the speed of turbine is used as feedback. To design a Fuzzy rule base, the characteristics of the wind turbine’s response to wind speed are investigated first. Then Fuzzy logic-based controller is created and implemented. To test the effectiveness of the Fuzzy controller made, the implementation is carried out on a VAWT turbine while the simulation is applied to PMSG model using wind turbine through Simulink/Matlab. Based on simulation and experiment results, the performance of the control system using Integral Absolute Error (IAE) for each turbine speed set point value (35, 45, 85, and 100 RPM), it is found that for a small set point value, the IAE value will be larger than higher setpoints. The percentage of the average IAE value for the simulation is 10.25% higher than the experiment. It further shows that the control turbine speed at low speeds is relatively more difficult than at higher speeds.Turbin angin sumbu vertikal atau VAWT (Vertical Axis Wind Turbine) merupakan turbin angin yang memiliki struktur mekanik tegak ke atas dengan bilah-bilah turbin yang berputar terhadap sumbu-z tegak lurus. Berdasark an hasil eksperimen diperoleh bahwa terdapat hubungan antara kecepatan putaran turbin yang memutar generator dengan keluaran tegangan dan daya yang dihasilkan, sehingga diperlukan upaya mengendalikan kecepatan turbin angin agar dapat berputar sesuai setpoin yang ingin dicapai. Kontribusi dari penelitian ini berupa pengembangan sistem kontrol berbasis logika Fuzzy untuk mengendalikan kecepatan turbin VAWT dengan hanya menggunakan umpan balik berupa kecepatan turbin angin. Hal ini berbeda dengan penelitian sebelumnya dimana kecepatan angin dan keluaran daya dijadikan sebagai umpan balik. Untuk mengetahui karakteristik dari kecepatan turbin dan keluaran tegangan, serta hubungan antara kecepatan turbin dan kecepatan angin dengan variasi sudut pitch bilah, maka pengujian dilakukan dalam skala laboratorium dengan menggunakan blower. Untuk merancang rule base (aturan) Fuzzy, maka karakteristik dari respon turbin angin terhadap kecepatan angin diteliti terlebih dahulu. Kemudian kontroller berbasis logika Fuzzy dibuat dan diimplementasikan. Untuk menguji efektivitas kontroller Fuzzy yang dibuat, maka implementasi dilakukan pada turbin VAWT sedangkan simulasi diterapkan pada model PMSG turbin angin melalui Simulink/Matlab. Berdasarkan hasil pengujian melalui simulasi dan eksperimen dengan mengukur kinerja respon sistem kontrol menggunakan Integral Absolut Error (IAE) untuk masing-masing nilai setpoin kecepatan turbin (35, 45, 85, dan 100 RPM) diperoleh bahwa untuk nilai setpoin kecil maka nilai IAE akan semakin besar dibandingkan setpoin yang lebih tinggi. Persentase nilai rata-rata IAE untuk simulasi adalah 10,25% lebih tinggi dibandingkan dengan eksperimen. Hal ini kemudian menunjukkan bahwa pengendalian kecepatan turbin pada kecepatan rendah relatif lebih sulit dibandingkan dengan kecepatan turbin lebih tinggi

    Design and investigations of MPPT strategies for a wind energy conversion system based on doubly fed induction generator

    Get PDF
    The purpose of this work is to design and to discuss various strategies to optimize the production of a wind energy conversion chain based on the doubly fed induction generator (DFIG), by capturing the maximum power at the wind turbine, using maximum power point tracking (MPPT) and pitch control. The proposed controls allow the generator to monitor the optimal operating points of the turbines regardless of wind speed variations, system parameters disturbance, and parameters variation. Simulation of WECS based on a 1.5 MW wound rotor induction generator under MATLAB/SIMULINK is carried out using the PI controller (PIC), RST controller and fuzzy logic controller (FLC). Analysis and comparisons are made for different operating scenarios: Reference tracking, robustness under variable wind speed conditions and parameters variation. The application of FLC provides a very interesting outcome for the robustness and the dynamic challenges

    Active sensor fault tolerant output feedback tracking control for wind turbine systems via T-S model

    Get PDF
    This paper presents a new approach to active sensor fault tolerant tracking control (FTTC) for offshore wind turbine (OWT) described via Takagi–Sugeno (T–S) multiple models. The FTTC strategy is designed in such way that aims to maintain nominal wind turbine controller without any change in both fault and fault-free cases. This is achieved by inserting T–S proportional state estimators augmented with proportional and integral feedback (PPI) fault estimators to be capable to estimate different generators and rotor speed sensors fault for compensation purposes. Due to the dependency of the FTTC strategy on the fault estimation the designed observer has the capability to estimate a wide range of time varying fault signals. Moreover, the robustness of the observer against the difference between the anemometer wind speed measurement and the immeasurable effective wind speed signal has been taken into account. The corrected measurements fed to a T–S fuzzy dynamic output feedback controller (TSDOFC) designed to track the desired trajectory. The stability proof with H∞ performance and D-stability constraints is formulated as a Linear Matrix Inequality (LMI) problem. The strategy is illustrated using a non-linear benchmark system model of a wind turbine offered within a competition led by the companies Mathworks and KK-Electronic

    Nonlinear Dual-Mode Control of Variable-Speed Wind Turbines with Doubly Fed Induction Generators

    Full text link
    This paper presents a feedback/feedforward nonlinear controller for variable-speed wind turbines with doubly fed induction generators. By appropriately adjusting the rotor voltages and the blade pitch angle, the controller simultaneously enables: (a) control of the active power in both the maximum power tracking and power regulation modes, (b) seamless switching between the two modes, and (c) control of the reactive power so that a desirable power factor is maintained. Unlike many existing designs, the controller is developed based on original, nonlinear, electromechanically-coupled models of wind turbines, without attempting approximate linearization. Its development consists of three steps: (i) employ feedback linearization to exactly cancel some of the nonlinearities and perform arbitrary pole placement, (ii) design a speed controller that makes the rotor angular velocity track a desired reference whenever possible, and (iii) introduce a Lyapunov-like function and present a gradient-based approach for minimizing this function. The effectiveness of the controller is demonstrated through simulation of a wind turbine operating under several scenarios.Comment: 14 pages, 9 figures, accepted for publication in IEEE Transactions on Control Systems Technolog

    Modeling and Lyapunov-designed based on adaptive gain sliding mode control for wind turbines

    Get PDF
    In this paper, modeling and the Lyapunov-designed control approach are studied for the Wind Energy Conversion Systems (WECS). The objective of this study is to ensure the maximum energy production of a WECS while reducing the mechanical stress on the shafts (turbine and generator). Furthermore, the proposed control strategy aims to optimize the wind energy captured by the wind turbine operating under rating wind speed, using an Adaptive Gain Sliding Mode Control (AG-SMC). The adaptation for the sliding gain and the torque estimation are carried out using the sliding surface as an improved solution that handles the conventional sliding mode control. Furthermore, the resultant WECS control policy is relatively simple, meaning the online computational cost and time are considerably reduced. Time-domain simulation studies are performed to discuss the effectiveness of the proposed control strateg

    Power Quality Improvement and Low Voltage Ride through Capability in Hybrid Wind-PV Farms Grid-Connected Using Dynamic Voltage Restorer

    Get PDF
    © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission.This paper proposes the application of a dynamic voltage restorer (DVR) to enhance the power quality and improve the low voltage ride through (LVRT) capability of a three-phase medium-voltage network connected to a hybrid distribution generation system. In this system, the photovoltaic (PV) plant and the wind turbine generator (WTG) are connected to the same point of common coupling (PCC) with a sensitive load. The WTG consists of a DFIG generator connected to the network via a step-up transformer. The PV system is connected to the PCC via a two-stage energy conversion (dc-dc converter and dc-ac inverter). This topology allows, first, the extraction of maximum power based on the incremental inductance technique. Second, it allows the connection of the PV system to the public grid through a step-up transformer. In addition, the DVR based on fuzzy logic controller is connected to the same PCC. Different fault condition scenarios are tested for improving the efficiency and the quality of the power supply and compliance with the requirements of the LVRT grid code. The results of the LVRT capability, voltage stability, active power, reactive power, injected current, and dc link voltage, speed of turbine, and power factor at the PCC are presented with and without the contribution of the DVR system.Peer reviewe

    Análisis de armónicos variando en el tiempo en sistemas eléctricos de potencia con parques eólicos, a través de la teoría de la posibilidad

    Get PDF
    This paper focuses on the analysis of the connection of wind farms to the electric power system and their impact on the harmonic load-flow. A possibilistic harmonic load-flow methodology, previously developed by the authors, allows for modeling uncertainties related to linear and nonlinear load variations. On the other hand, it is well known that some types of wind turbines also produce harmonics, in fact, time-varying harmonics. The purpose of this paper is to present an improvement of the former method, in order to include the uncertainties due to the wind speed variations as an input related with power generated by the turbines. Simulations to test the proposal are performed in the IEEE 14-bus standard test system for harmonic analysis, but replacing the generator, at bus two, by a wind farm composed by ten FPC type wind turbines.En este trabajo se analiza el impacto de la conexión de parques eólicos, en el flujo de cargas armónicas en un sistema de potencia. Algunos generadores eólicos producen armónicos debido a la electrónica de potencia que utilizan para su vinculación con la red. Estos armónicos son variables en el tiempo ya que se relacionan con las variaciones en la velocidad del viento. El propósito de este trabajo es presentar una mejora a la metodología para el cálculo de incertidumbre en el flujo de cargas armónicas, a través de la teoría de la posibilidad, la cual fue previamente desarrollada por los autores. La mejora consiste en incluir la incertidumbre debida a las variaciones de la velocidad del viento. Para probar la metodología, se realizan simulaciones en el sistema de prueba de 14 barras de la IEEE, conectando en una de las barras un parque eólico compuesto por diez turbinas del tipo FPC. Los resultados obtenidos muestran que la incertidumbre en la velocidad del viento tiene un efecto considerable en las incertidumbres asociadas a las magnitudes de las tensiones armónicas calculadas.Fil: Romero Quete, Andrés Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Suvire, Gaston Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Zini, Humberto Cassiano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Ratta, Giuseppe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentin
    corecore