96 research outputs found

    An Architecture for High-throughput and Improved-quality Stereo Vision Processor

    Get PDF
    This paper presents the VLSI architecture to achieve high-throughput and improved-quality stereo vision for real applications. The stereo vision processor generates gray-scale output images with depth information from input images taken by two CMOS Image Sensors (CIS). The depth estimator using the sum of absolute differences (SAD) algorithm as stereo matching technique is implemented on hardware by exploiting pipelining and parallelism. To produce depth maps with improved-quality at real-time, pre- and post-processing units are adopted, and to enhance the adaptability of the system to real environments, special function registers (SFRs) are assigned to vision parameters. The design using 0.18um standard CMOS technology can operate at 120MHz clock, achieving over 140 frames/sec depth maps with 320 by 240 image size and 64 disparity levels. Experimental results based on images taken in real world and the Middlebury data set will be presented. Comparison data with existing hardware systems and hardware specifications of the proposed processor will be given

    Automated Debugging Methodology for FPGA-based Systems

    Get PDF
    Electronic devices make up a vital part of our lives. These are seen from mobiles, laptops, computers, home automation, etc. to name a few. The modern designs constitute billions of transistors. However, with this evolution, ensuring that the devices fulfill the designer’s expectation under variable conditions has also become a great challenge. This requires a lot of design time and effort. Whenever an error is encountered, the process is re-started. Hence, it is desired to minimize the number of spins required to achieve an error-free product, as each spin results in loss of time and effort. Software-based simulation systems present the main technique to ensure the verification of the design before fabrication. However, few design errors (bugs) are likely to escape the simulation process. Such bugs subsequently appear during the post-silicon phase. Finding such bugs is time-consuming due to inherent invisibility of the hardware. Instead of software simulation of the design in the pre-silicon phase, post-silicon techniques permit the designers to verify the functionality through the physical implementations of the design. The main benefit of the methodology is that the implemented design in the post-silicon phase runs many order-of-magnitude faster than its counterpart in pre-silicon. This allows the designers to validate their design more exhaustively. This thesis presents five main contributions to enable a fast and automated debugging solution for reconfigurable hardware. During the research work, we used an obstacle avoidance system for robotic vehicles as a use case to illustrate how to apply the proposed debugging solution in practical environments. The first contribution presents a debugging system capable of providing a lossless trace of debugging data which permits a cycle-accurate replay. This methodology ensures capturing permanent as well as intermittent errors in the implemented design. The contribution also describes a solution to enhance hardware observability. It is proposed to utilize processor-configurable concentration networks, employ debug data compression to transmit the data more efficiently, and partially reconfiguring the debugging system at run-time to save the time required for design re-compilation as well as preserve the timing closure. The second contribution presents a solution for communication-centric designs. Furthermore, solutions for designs with multi-clock domains are also discussed. The third contribution presents a priority-based signal selection methodology to identify the signals which can be more helpful during the debugging process. A connectivity generation tool is also presented which can map the identified signals to the debugging system. The fourth contribution presents an automated error detection solution which can help in capturing the permanent as well as intermittent errors without continuous monitoring of debugging data. The proposed solution works for designs even in the absence of golden reference. The fifth contribution proposes to use artificial intelligence for post-silicon debugging. We presented a novel idea of using a recurrent neural network for debugging when a golden reference is present for training the network. Furthermore, the idea was also extended to designs where golden reference is not present

    The Novel Image Signal Analysis of Monitoring Video Based on CMOS Image Sensor

    Get PDF
    The image sensor is the most important part of video and still image processing line in digital video or still camera. Data of CMOS process will produce noise in long transmission distance; therefore it must first be amplified and integrated each pixel data. The choice of medium and apparatus for transmitting image and the other the control signal will be directly related to the quality and reliability of the monitoring system. CMOS image sensor has the characteristics of low power, high integration and flexible function. The paper proposes the novel image signal analysis of monitoring video based on CMOS image sensor. In this paper, simulation results shows by using analog signal hardware simulation that the system can achieve the intended function and achieve the ideal effect

    FPGA-based stereo vision system for autonomous driving

    Get PDF
    The project consists on the design and implementation of a real-time stereo vision image sensor oriented to autonomous driving systems using an FPGA. The function of this sensor is to output a real-time depth image from an input of two grayscale luminance images, which can make further processing much easier and faster. The final objective of the project is to develop a standalone prototype for the implementation of the system on an autonomous vehicle, but it will be developed on an existing FPGA platform to prove its viability. Two low-cost digital cameras will be used as input sensors, and the output image will be transmitted to a PC

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un

    Cowpea sorter: An alternative to the manual cowpea sorting process

    Get PDF
    Capstone Project submitted to the Department of Engineering, Ashesi University in partial fulfillment of the requirements for the award of Bachelor of Science degree in Electrical and Electronic Engineering, April 2019Cowpea traders find the manual sorting process of cowpeas laborious and time-consuming. Based on the volume of cowpeas and the proportion of damaged cowpeas, the process can span a time interval of about 6 hours. This project integrates the power of computer vision and convolutional neural networks to develop a solution for the cowpea trader to effectively segregate good cowpeas from the damaged ones.Ashesi Universit
    • …
    corecore