52,190 research outputs found

    Potential benefits of an adaptive forward collision warning system

    Get PDF
    Forward collision warning (FCW) systems can reduce rear-end vehicle collisions. However, if the presentation of warnings is perceived as mistimed, trust in the system is diminished and drivers become less likely to respond appropriately. In this driving simulator investigation, 45 drivers experienced two FCW systems: a non-adaptive and an adaptive FCW that adjusted the timing of its alarms according to each individual driverā€™s reaction time. Whilst all drivers benefited in terms of improved safety from both FCW systems, non-aggressive drivers (low sensation seeking, long followers) did not display a preference to the adaptive FCW over its non-adaptive equivalent. Furthermore, there was little evidence to suggest that the non-aggressive driversā€™ performance differed with either system. Benefits of the adaptive system were demonstrated for aggressive drivers (high sensation seeking, short followers). Even though both systems reduced their likelihood of a crash to a similar extent, the aggressive drivers rated each FCW more poorly than their non-aggressive contemporaries. However, this group, with their greater risk of involvement in rear-end collisions, reported a preference for the adaptive system as they found it less irritating and stress-inducing. Achieving greater acceptance and hence likely use of a real system is fundamental to good quality FCW design

    Integration of an adaptive infotainment system in a vehicle and validation in real driving scenarios

    Get PDF
    More services, functionalities, and interfaces are increasingly being incorporated into current vehicles and may overload the driver capacity to perform primary driving tasks adequately. For this reason, a strategy for easing driver interaction with the infotainment system must be defined, and a good balance between road safety and driver experience must also be achieved. An adaptive Human Machine Interface (HMI) that manages the presentation of information and restricts driversā€™ interaction in accordance with the driving complexity was designed and evaluated. For this purpose, the driving complexity value employed as a reference was computed by a predictive model, and the adaptive interface was designed following a set of proposed HMI principles. The system was validated performing acceptance and usability tests in real driving scenarios. Results showed the system performs well in real driving scenarios. Also, positive feedbacks were received from participants endorsing the benefits of integrating this kind of system as regards driving experience and road safety.Postprint (published version

    Driver behaviour with adaptive cruise control

    Get PDF
    This paper reports on the evaluation of adaptive cruise control (ACC) from a psychological perspective. It was anticipated that ACC would have an effect upon the psychology of driving, i.e. make the driver feel like they have less control, reduce the level of trust in the vehicle, make drivers less situationally aware, but workload might be reduced and driving might be less stressful. Drivers were asked to drive in a driving simulator under manual and ACC conditions. Analysis of variance techniques were used to determine the effects of workload (i.e. amount of traffic) and feedback (i.e. degree of information from the ACC system) on the psychological variables measured (i.e. locus of control, trust, workload, stress, mental models and situation awareness). The results showed that: locus of control and trust were unaffected by ACC, whereas situation awareness, workload and stress were reduced by ACC. Ways of improving situation awareness could include cues to help the driver predict vehicle trajectory and identify conflicts

    The psychology of driving automation: A discussion with Professor Don Norman

    Get PDF
    Introducing automation into automobiles had inevitable consequences for the driver and driving. Systems that automate longitudinal and lateral vehicle control may reduce the workload of the driver. This raises questions of what the driver is able to do with this 'spare' attentional capacity. Research in our laboratory suggests that there is unlikely to be any spare capacity because the attentional resources are not 'fixed'. Rather, the resources are inextricably linked to task demand. This paper presents some of the arguments for considering the psychological aspects of the driver when designing automation into automobiles. The arguments are presented in a conversation format, based on discussions with Professor Don Norman. Extracts from relevant papers to support the arguments are presented

    Designing an Adaptive Interface: Using Eye Tracking to Classify How Information Usage Changes Over Time in Partially Automated Vehicles

    Get PDF
    While partially automated vehicles can provide a range of benefits, they also bring about new Human Machine Interface (HMI) challenges around ensuring the driver remains alert and is able to take control of the vehicle when required. While humans are poor monitors of automated processes, specifically during ā€˜steady stateā€™ operation, presenting the appropriate information to the driver can help. But to date, interfaces of partially automated vehicles have shown evidence of causing cognitive overload. Adaptive HMIs that automatically change the information presented (for example, based on workload, time or physiologically), have been previously proposed as a solution, but little is known about how information should adapt during steady-state driving. This study aimed to classify information usage based on driver experience to inform the design of a future adaptive HMI in partially automated vehicles. The unique feature of this study over existing literature is that each participant attended for five consecutive days; enabling a first look at how information usage changes with increasing familiarity and providing a methodological contribution to future HMI user trial study design. Seventeen participants experienced a steady-state automated driving simulation for twenty-six minutes per day in a driving simulator, replicating a regularly driven route, such as a work commute. Nine information icons, representative of future partially automated vehicle HMIs, were displayed on a tablet and eye tracking was used to record the information that the participants fixated on. The results found that information usage did change with increased exposure, with significant differences in what information participants looked at between the first and last trial days. With increasing experience, participants tended to view information as confirming technical competence rather than the future state of the vehicle. On this basis, interface design recommendations are made, particularly around the design of adaptive interfaces for future partially automated vehicles

    Driving automation: Learning from aviation about design philosophies

    Get PDF
    Full vehicle automation is predicted to be on British roads by 2030 (Walker et al., 2001). However, experience in aviation gives us some cause for concern for the 'drive-by-wire' car (Stanton and Marsden, 1996). Two different philosophies have emerged in aviation for dealing with the human factor: hard vs. soft automation, depending on whether the computer or the pilot has ultimate authority (Hughes and Dornheim, 1995). This paper speculates whether hard or soft automation provides the best solution for road vehicles, and considers an alternative design philosophy in vehicles of the future based on coordination and cooperation

    User expectations of partial driving automation capabilities and their effect on information design preferences in the vehicle

    Get PDF
    Partially automated vehicles present interface design challenges in ensuring the driver remains alert should the vehicle need to hand back control at short notice, but without exposing the driver to cognitive overload. To date, little is known about driver expectations of partial driving automation and whether this affects the information they require inside the vehicle. Twenty-five participants were presented with five partially automated driving events in a driving simulator. After each event, a semi-structured interview was conducted. The interview data was coded and analysed using grounded theory. From the results, two groupings of driver expectations were identified: High Information Preference (HIP) and Low Information Preference (LIP) drivers; between these two groups the information preferences differed. LIP drivers did not want detailed information about the vehicle presented to them, but the definition of partial automation means that this kind of information is required for safe use. Hence, the results suggest careful thought as to how information is presented to them is required in order for LIP drivers to safely using partial driving automation. Conversely, HIP drivers wanted detailed information about the system's status and driving and were found to be more willing to work with the partial automation and its current limitations. It was evident that the drivers' expectations of the partial automation capability differed, and this affected their information preferences. Hence this study suggests that HMI designers must account for these differing expectations and preferences to create a safe, usable system that works for everyone. [Abstract copyright: Copyright Ā© 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.

    A proposed psychological model of driving automation

    Get PDF
    This paper considers psychological variables pertinent to driver automation. It is anticipated that driving with automated systems is likely to have a major impact on the drivers and a multiplicity of factors needs to be taken into account. A systems analysis of the driver, vehicle and automation served as the basis for eliciting psychological factors. The main variables to be considered were: feed-back, locus of control, mental workload, driver stress, situational awareness and mental representations. It is expected that anticipating the effects on the driver brought about by vehicle automation could lead to improved design strategies. Based on research evidence in the literature, the psychological factors were assembled into a model for further investigation
    • ā€¦
    corecore