46,734 research outputs found

    Vector field processing on triangle meshes

    Get PDF
    While scalar fields on surfaces have been staples of geometry processing, the use of tangent vector fields has steadily grown in geometry processing over the last two decades: they are crucial to encoding directions and sizing on surfaces as commonly required in tasks such as texture synthesis, non-photorealistic rendering, digital grooming, and meshing. There are, however, a variety of discrete representations of tangent vector fields on triangle meshes, and each approach offers different tradeoffs among simplicity, efficiency, and accuracy depending on the targeted application. This course reviews the three main families of discretizations used to design computational tools for vector field processing on triangle meshes: face-based, edge-based, and vertex-based representations. In the process of reviewing the computational tools offered by these representations, we go over a large body of recent developments in vector field processing in the area of discrete differential geometry. We also discuss the theoretical and practical limitations of each type of discretization, and cover increasingly-common extensions such as n-direction and n-vector fields. While the course will focus on explaining the key approaches to practical encoding (including data structures) and manipulation (including discrete operators) of finite-dimensional vector fields, important differential geometric notions will also be covered: as often in Discrete Differential Geometry, the discrete picture will be used to illustrate deep continuous concepts such as covariant derivatives, metric connections, or Bochner Laplacians

    The collision avoidance and the controllability for nn bodies in dimension one

    Full text link
    We present a method of design of control systems for nn bodies in the real line R1\Bbb R^1 and on the unit circle S1 S^1, to be collision-free and controllable. The problem reduces to designing a control-affine system in Rn\Bbb R^n and in nn-torus Tn,T^n, respectively, that avoids certain obstacles. We prove the controllability of the system by showing that the vector fields that define the control-affine system, together with their brackets of first order, span the whole tangent space of the state space, and then by applying the Rashevsky-Chow theorem

    Approximation of tensor fields on surfaces of arbitrary topology based on local Monge parametrizations

    Full text link
    We introduce a new method, the Local Monge Parametrizations (LMP) method, to approximate tensor fields on general surfaces given by a collection of local parametrizations, e.g.~as in finite element or NURBS surface representations. Our goal is to use this method to solve numerically tensor-valued partial differential equations (PDE) on surfaces. Previous methods use scalar potentials to numerically describe vector fields on surfaces, at the expense of requiring higher-order derivatives of the approximated fields and limited to simply connected surfaces, or represent tangential tensor fields as tensor fields in 3D subjected to constraints, thus increasing the essential number of degrees of freedom. In contrast, the LMP method uses an optimal number of degrees of freedom to represent a tensor, is general with regards to the topology of the surface, and does not increase the order of the PDEs governing the tensor fields. The main idea is to construct maps between the element parametrizations and a local Monge parametrization around each node. We test the LMP method by approximating in a least-squares sense different vector and tensor fields on simply connected and genus-1 surfaces. Furthermore, we apply the LMP method to two physical models on surfaces, involving a tension-driven flow (vector-valued PDE) and nematic ordering (tensor-valued PDE). The LMP method thus solves the long-standing problem of the interpolation of tensors on general surfaces with an optimal number of degrees of freedom.Comment: 16 pages, 6 figure

    Non-natural metrics on the tangent bundle

    Full text link
    Natural metrics provide a way to induce a metric on the tangent bundle from the metric on its base manifold. The most studied type is the Sasaki metric, which applies the base metric separately to the vertical and horizontal components. We study a more general class of metrics which introduces interactions between the vertical and horizontal components, with scalar weights. Additionally, we explicitly clarify how to apply our and other induced metrics on the tangent bundle to vector fields where the vertical component is not constant along the fibers. We give application to the Special Orthogonal Group SO(3) as an example.Published versio
    • …
    corecore