1,384 research outputs found

    Risk based resilient network design

    Get PDF
    This paper presents a risk-based approach to resilient network design. The basic design problem considered is that given a working network and a fixed budget, how best to allocate the budget for deploying a survivability technique in different parts of the network based on managing the risk. The term risk measures two related quantities: the likelihood of failure or attack, and the amount of damage caused by the failure or attack. Various designs with different risk-based design objectives are considered, for example, minimizing the expected damage, minimizing the maximum damage, and minimizing a measure of the variability of damage that could occur in the network. A design methodology for the proposed risk-based survivable network design approach is presented within an optimization model framework. Numerical results and analysis illustrating the different risk based designs and the tradeoffs among the schemes are presented. © 2011 Springer Science+Business Media, LLC

    Survivability in Time-varying Networks

    Get PDF
    Time-varying graphs are a useful model for networks with dynamic connectivity such as vehicular networks, yet, despite their great modeling power, many important features of time-varying graphs are still poorly understood. In this paper, we study the survivability properties of time-varying networks against unpredictable interruptions. We first show that the traditional definition of survivability is not effective in time-varying networks, and propose a new survivability framework. To evaluate the survivability of time-varying networks under the new framework, we propose two metrics that are analogous to MaxFlow and MinCut in static networks. We show that some fundamental survivability-related results such as Menger's Theorem only conditionally hold in time-varying networks. Then we analyze the complexity of computing the proposed metrics and develop several approximation algorithms. Finally, we conduct trace-driven simulations to demonstrate the application of our survivability framework to the robust design of a real-world bus communication network

    Disaster-Resilient Control Plane Design and Mapping in Software-Defined Networks

    Full text link
    Communication networks, such as core optical networks, heavily depend on their physical infrastructure, and hence they are vulnerable to man-made disasters, such as Electromagnetic Pulse (EMP) or Weapons of Mass Destruction (WMD) attacks, as well as to natural disasters. Large-scale disasters may cause huge data loss and connectivity disruption in these networks. As our dependence on network services increases, the need for novel survivability methods to mitigate the effects of disasters on communication networks becomes a major concern. Software-Defined Networking (SDN), by centralizing control logic and separating it from physical equipment, facilitates network programmability and opens up new ways to design disaster-resilient networks. On the other hand, to fully exploit the potential of SDN, along with data-plane survivability, we also need to design the control plane to be resilient enough to survive network failures caused by disasters. Several distributed SDN controller architectures have been proposed to mitigate the risks of overload and failure, but they are optimized for limited faults without addressing the extent of large-scale disaster failures. For disaster resiliency of the control plane, we propose to design it as a virtual network, which can be solved using Virtual Network Mapping techniques. We select appropriate mapping of the controllers over the physical network such that the connectivity among the controllers (controller-to-controller) and between the switches to the controllers (switch-to-controllers) is not compromised by physical infrastructure failures caused by disasters. We formally model this disaster-aware control-plane design and mapping problem, and demonstrate a significant reduction in the disruption of controller-to-controller and switch-to-controller communication channels using our approach.Comment: 6 page

    Analysis and optimization of highly reliable systems

    Get PDF
    In the field of network design, the survivability property enables the network to maintain a certain level of network connectivity and quality of service under failure conditions. In this thesis, survivability aspects of communication systems are studied. Aspects of reliability and vulnerability of network design are also addressed. The contributions are three-fold. First, a Hop Constrained node Survivable Network Design Problem (HCSNDP) with optional (Steiner) nodes is modelled. This kind of problems are N P-Hard. An exact integer linear model is built, focused on networks represented by graphs without rooted demands, considering costs in arcs and in Steiner nodes. In addition to the exact model, the calculation of lower and upper bounds to the optimal solution is included. Models were tested over several graphs and instances, in order to validate it in cases with known solution. An Approximation Algorithm is also developed in order to address a particular case of SNDP: the Two Node Survivable Star Problem (2NCSP) with optional nodes. This problem belongs to the class of N P-Hard computational problems too. Second, the research is focused on cascading failures and target/random attacks. The Graph Fragmentation Problem (GFP) is the result of a worst case analysis of a random attack. A fixed number of individuals for protection can be chosen, and a non-protected target node immediately destroys all reachable nodes. The goal is to minimize the expected number of destroyed nodes in the network. This problem belongs to the N P-Hard class. A mathematical programming formulation is introduced and exact resolution for small instances as well as lower and upper bounds to the optimal solution. In addition to exact methods, we address the GFP by several approaches: metaheuristics, approximation algorithms, polytime methods for specific instances and exact methods in exponential time. Finally, the concept of separability in stochastic binary systems is here introduced. Stochastic Binary Systems (SBS) represent a mathematical model of a multi-component on-off system subject to independent failures. The reliability evaluation of an SBS belongs to the N P-Hard class. Therefore, we fully characterize separable systems using Han-Banach separation theorem for convex sets. Using this new concept of separable systems and Markov inequality, reliability bounds are provided for arbitrary SBS

    An Implicit Optimization Approach for Survivable Network Design

    Full text link
    We consider the problem of designing a network of minimum cost while satisfying a prescribed survivability criterion. The survivability criterion requires that a feasible flow must still exists (i.e. all demands can be satisfied without violating arc capacities) even after the disruption of a subset of the network's arcs. Specifically, we consider the case in which a disruption (random or malicious) can destroy a subset of the arcs, with the cost of the disruption not to exceed a disruption budget. This problem takes the form of a tri-level, two-player game, in which the network operator designs (or augments) the network, then the attacker launches a disruption that destroys a subset of arcs, and then the network operator attempts to find a feasible flow over the residual network. We first show how this can be modeled as a two-stage stochastic program from the network operator's perspective, with each of the exponential number of potential attacks considered as a disruption scenario. We then reformulate this problem, via a Benders decomposition, to consider the recourse decisions implicitly, greatly reducing the number of variables but at the expense of an exponential increase in the number of constraints. We next develop a cut-generation based algorithm. Rather than \emph{explicitly} considering each disruption scenario to identify these Benders cuts, however, we develop a bi-level program and corresponding separation algorithm that enables us to \emph{implicitly} evaluate the exponential set of disruption scenarios. Our computational results demonstrate the efficacy of this approach

    A Flexible, Natural Formulation for the Network Design Problem with Vulnerability Constraints

    Get PDF
    Given a graph, a set of origin-destination (OD) pairs with communication requirements, and an integer k >= 2, the network design problem with vulnerability constraints (NDPVC) is to identify a subgraph with the minimum total edge costs such that, between each OD pair, there exist a hop-constrained primary path and a hop-constrained backup path after any k - 1 edges of the graph fail. Formulations exist for single-edge failures (i.e., k = 2). To solve the NDPVC for an arbitrary number of edge failures, we develop two natural formulations based on the notion of length-bounded cuts. We compare their strengths and flexibilities in solving the problem for k >= 3. We study different methods to separate infeasible solutions by computing length-bounded cuts of a given size. Experimental results show that, for single-edge failures, our formulation increases the number of solved benchmark instances from 61% (obtained within a two-hour limit by the best published algorithm) to more than 95%, thus increasing the number of solved instances by 1,065. Our formulation also accelerates the solution process for larger hop limits and efficiently solves the NDPVC for general k. We test our best algorithm for two to five simultaneous edge failures and investigate the impact of multiple failures on the network design

    Survivable Cloud Network Mapping for Disaster Recovery Support

    Get PDF
    Network virtualization is a key provision for improving the scalability and reliability of cloud computing services. In recent years, various mapping schemes have been developed to reserve VN resources over substrate networks. However, many cloud providers are very concerned about improving service reliability under catastrophic disaster conditions yielding multiple system failures. To address this challenge, this work presents a novel failure region-disjoint VN mapping scheme to improve VN mapping survivability. The problem is first formulated as a mixed integer linear programming problem and then two heuristic solutions are proposed to compute a pair of failure region-disjoint VN mappings. The solution also takes into account mapping costs and load balancing concerns to help improve resource efficiencies. The schemes are then analyzed in detail for a variety of networks and their overall performances compared to some existing survivable VN mapping scheme

    Resilient network design: Challenges and future directions

    Get PDF
    This paper highlights the complexity and challenges of providing reliable services in the evolving communications infrastructure. The hurdles in providing end-to-end availability guarantees are discussed and research problems identified. Avenues for overcoming some of the challenges examined are presented. This includes the use of a highly available network spine embedded in a physical network together with efficient crosslayer mapping to offer survivability and differentiation of traffic into classes of resilience. © 2013 Springer Science+Business Media New York
    corecore