1,232 research outputs found

    The Multilayer Capacitated Survivable IP Network Design Problem : valid inequalities and Branch-and-Cut

    No full text
    Telecommunication networks can be seen as the stacking of several layers like, for instance, IP-over-Optical networks. This infrastructure has to be sufficiently survivable to restore the traffic in the event of a failure. Moreover, it should have adequate capacities so that the demands can be routed between the origin-destinations. In this paper we consider the Multilayer Capacitated Survivable IP Network Design problem. We study two variants of this problem with simple and multiple capacities. We give two multicommodity flow formulations for each variant of this problem and describe some valid inequalities. In particular, we characterize valid inequalities obtained using Chvatal-Gomory procedure from the well known Cutset inequalities. We show that some of these inequalities are facet defining. We discuss separation routines for all the valid inequalities. Using these results, we develop a Branch-and-Cut algorithm and a Branch-and-Cut-and-Price algorithm for each variant and present extensive computational results

    Logical topology design for IP rerouting: ASONs versus static OTNs

    Get PDF
    IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures

    Optimized Design of Survivable MPLS over Optical Transport Networks. Optical Switching and Networking

    Get PDF
    In this paper we study different options for the survivability implementation in MPLS over Optical Transport Networks in terms of network resource usage and configuration cost. We investigate two approaches to the survivability deployment: single layer and multilayer survivability and present various methods for spare capacity allocation (SCA) to reroute disrupted traffic. The comparative analysis shows the influence of the traffic granularity on the survivability cost: for high bandwidth LSPs, close to the optical channel capacity, the multilayer survivability outperforms the single layer one, whereas for low bandwidth LSPs the single layer survivability is more cost-efficient. For the multilayer survivability we demonstrate that by mapping efficiently the spare capacity of the MPLS layer onto the resources of the optical layer one can achieve up to 22% savings in the total configuration cost and up to 37% in the optical layer cost. Further savings (up to 9 %) in the wavelength use can be obtained with the integrated approach to network configuration over the sequential one, however, at the increase in the optimization problem complexity. These results are based on a cost model with actual technology pricing and were obtained for networks targeted to a nationwide coverage

    Risk based resilient network design

    Get PDF
    This paper presents a risk-based approach to resilient network design. The basic design problem considered is that given a working network and a fixed budget, how best to allocate the budget for deploying a survivability technique in different parts of the network based on managing the risk. The term risk measures two related quantities: the likelihood of failure or attack, and the amount of damage caused by the failure or attack. Various designs with different risk-based design objectives are considered, for example, minimizing the expected damage, minimizing the maximum damage, and minimizing a measure of the variability of damage that could occur in the network. A design methodology for the proposed risk-based survivable network design approach is presented within an optimization model framework. Numerical results and analysis illustrating the different risk based designs and the tradeoffs among the schemes are presented. © 2011 Springer Science+Business Media, LLC
    • …
    corecore