846 research outputs found

    Reverse Engineering Biological Control Systems for Applications in Process Control.

    Get PDF
    The main emphasis of this dissertation is the development of nonlinear control strategies based on biological control systems. Commonly utilized biological control schemes have been studied in order to reverse engineer the important concepts for applications in process control. This approach has led to the development of a nonlinear habituating control strategy and nonlinear model reference adaptive control schemes. Habituating control is a controller design strategy for nonlinear systems with more manipulated inputs than controlled outputs. Nonlinear control laws that provide input-output linearization while simultaneously minimizing the cost of affecting control are derived. Local stability analysis shows the controller can provide a simple solution to singularity and non-minimum phase problems. A direct adaptive control strategy for a class of single-input, single-output non-linear systems is presented. The major advantage is that a detailed dynamic non-linear model is not required for controller design. Unknown controller functions in the associated input-output linearizing control law are approximated using locally supported radial basis functions. Lyapunov stability analysis is used to derive parameter update laws which ensure the state vector remains bounded and the plant output asymptotically tracks the output of a linear reference model. A nonlinear model reference adaptive control strategy in which a linear model (or multiple linear models) is embedded within the nonlinear controller is presented. The nonlinear control law is constructed by embedding linear controller gains derived from models obtained using standard linear system identification techniques within the associated input-output linearizing control law. Higher-order controller functions are approximated with radial basis functions. Lyapunov stability analysis is used to derive stable parameter update laws. The major disadvantage of the previous techniques is computational expense. Two modifications have been developed. First, the effective dimension is reduced by applying nonlinear principal component analysis to the state variable data obtained from open-loop tests. This allows basis functions to be placed in a lower dimensional space than the original state space. Second, the total number of basis functions is fixed a priori and an algorithm which adds/prunes basis function centers to surround the current operating point on-line is utilized

    Stabilisation of Time Delay Systems with Nonlinear Disturbances Using Sliding Mode Control

    Get PDF
    This paper focuses on a class of control systems with delayed states and nonlinear disturbances using sliding mode techniques. Both matched and mismatched uncertainties are considered which are assumed to be bounded by known nonlinear functions. The bounds are used in the control design and analysis to reduce conservatism. A sliding function is designed and a set of sufficient conditions is derived to guarantee the asymptotic stability of the corresponding sliding motion by using the Lyapunov-Razumikhin approach which allows large time varying delay with fast changing rate. A delay dependent sliding mode control is synthesised to drive the system to the sliding surface in finite time and maintain a sliding motion thereafter. Effectiveness of the proposed method is demonstrated via a case study on a continuous stirred tank reactor system

    Flat systems, equivalence and trajectory generation

    Get PDF
    Flat systems, an important subclass of nonlinear control systems introduced via differential-algebraic methods, are defined in a differential geometric framework. We utilize the infinite dimensional geometry developed by Vinogradov and coworkers: a control system is a diffiety, or more precisely, an ordinary diffiety, i.e. a smooth infinite-dimensional manifold equipped with a privileged vector field. After recalling the definition of a Lie-Backlund mapping, we say that two systems are equivalent if they are related by a Lie-Backlund isomorphism. Flat systems are those systems which are equivalent to a controllable linear one. The interest of such an abstract setting relies mainly on the fact that the above system equivalence is interpreted in terms of endogenous dynamic feedback. The presentation is as elementary as possible and illustrated by the VTOL aircraft

    Data-based PID controller designs for nonlinear systems

    Get PDF
    Master'sMASTER OF ENGINEERIN

    On-line estimation of VFA concentration in anaerobic digestion via methane outflow rate measurements

    Get PDF
    "This paper deals with the design of a robust nonlinear observer as a software sensor to achieve the on-line estimation of the concentration of Volatile Fatty Acids (VFA) in a class of continuous anaerobic digesters (AD). Taking into account the limited availability of on-line sensors for AD process, in this contribution is assumed that only the methane outflow rate is available for on-line measurement. The estimation method is based on a modified version for a two-dimensional mathematical model of AD process. From the differential algebraic observability approach it is shown that the VFA concentration is detectable from the methane outflow rate measurements. The observer convergence is analyzed by using Lyapunov stability techniques. Numerical simulations illustrate the effectiveness of the proposed estimation method for a four-dimensional AD model with uncertainties associated with unmodeled dynamics and disturbances in the inflow composition.
    • ā€¦
    corecore