24,089 research outputs found

    Decentralized Adaptive Helper Selection in Multi-channel P2P Streaming Systems

    Full text link
    In Peer-to-Peer (P2P) multichannel live streaming, helper peers with surplus bandwidth resources act as micro-servers to compensate the server deficiencies in balancing the resources between different channel overlays. With deployment of helper level between server and peers, optimizing the user/helper topology becomes a challenging task since applying well-known reciprocity-based choking algorithms is impossible due to the one-directional nature of video streaming from helpers to users. Because of selfish behavior of peers and lack of central authority among them, selection of helpers requires coordination. In this paper, we design a distributed online helper selection mechanism which is adaptable to supply and demand pattern of various video channels. Our solution for strategic peers' exploitation from the shared resources of helpers is to guarantee the convergence to correlated equilibria (CE) among the helper selection strategies. Online convergence to the set of CE is achieved through the regret-tracking algorithm which tracks the equilibrium in the presence of stochastic dynamics of helpers' bandwidth. The resulting CE can help us select proper cooperation policies. Simulation results demonstrate that our algorithm achieves good convergence, load distribution on helpers and sustainable streaming rates for peers

    Algorithms for Rapidly Dispersing Robot Swarms in Unknown Environments

    Full text link
    We develop and analyze algorithms for dispersing a swarm of primitive robots in an unknown environment, R. The primary objective is to minimize the makespan, that is, the time to fill the entire region. An environment is composed of pixels that form a connected subset of the integer grid. There is at most one robot per pixel and robots move horizontally or vertically at unit speed. Robots enter R by means of k>=1 door pixels Robots are primitive finite automata, only having local communication, local sensors, and a constant-sized memory. We first give algorithms for the single-door case (i.e., k=1), analyzing the algorithms both theoretically and experimentally. We prove that our algorithms have optimal makespan 2A-1, where A is the area of R. We next give an algorithm for the multi-door case (k>1), based on a wall-following version of the leader-follower strategy. We prove that our strategy is O(log(k+1))-competitive, and that this bound is tight for our strategy and other related strategies.Comment: 17 pages, 4 figures, Latex, to appear in Workshop on Algorithmic Foundations of Robotics, 200

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Enabling Distributed Knowledge Management: Managerial and Technological Implications

    Get PDF
    In this paper we show that the typical architecture of current KM systems re.ects an objectivistic epistemology and a traditional managerial control paradigm. We argue that such an objectivistic epistemology is inconsistent with many theories on the nature of knowledge, in which subjectivity and sociality are taken as essential features of knowledge creation and sharing. We show that adopting such a new epistemological view has dramatic consequences at an architectural, managerial and technological level

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page
    • ā€¦
    corecore