3,299 research outputs found

    Control-theoretic approaches for efficient transmission on IEEE 802.11e wireless networks

    Get PDF
    With the increasing use of multimedia applications on the wireless network, the functionalities of the IEEE 802.11 WLAN was extended to allow traffic differentiation so that priority traffic gets quicker service time depending on their Quality of Service (QoS) requirements. The extended functionalities contained in the IEEE Medium Access Control (MAC) and Physical Layer (PHY) Specifications, i.e. the IEEE 802.11e specifications, are recommended values for channel access parameters along traffic lines and the channel access parameters are: the Minimum Contention Window CWmin, Maximum Contention Window CWmax, Arbitration inter-frame space number, (AIFSN) and the Transmission Opportunity (TXOP). These default Enhanced Distributed Channel Access (EDCA) contention values used by each traffic type in accessing the wireless medium are only recommended values which could be adjusted or changed based on the condition of number of associated nodes on the network. In particular, we focus on the Contention Window (CW) parameter and it has been shown that when the number of nodes on the network is small, a smaller value of CWmin should be used for channel access in order to avoid underutilization of channel time and when the number of associated nodes is large, a larger value of CWmin should be used in order to avoid large collisions and retransmissions on the network. Fortunately, allowance was made for these default values to be adjusted or changed but the challenge has been in designing an algorithm that constantly and automatically tunes the CWmin value so that the Access Point (AP) gives out the right CWmin value to be used on the WLAN and this value should be derived based on the level of activity experienced on the network or predefined QoS constraints while considering the dynamic nature of the WLAN. In this thesis, we propose the use of feedback based control and we design a controller for wireless medium access. The controller will give an output which will be the EDCA CWmin value to be used by contending stations/nodes in accessing the medium and this value will be based on current WLAN conditions. We propose the use of feedback control due to its established mathematical concepts particularly for single-input-single-output systems and multi-variable systems which are scenarios that apply to the WLAN

    Inter-Microgrid Operation: Power Sharing, Frequency Restoration, Seamless Reconnection and Stability Analysis

    Get PDF
    Electrification in the rural areas sometimes become very challenging due to area accessibility and economic concern. Standalone Microgrids (MGs) play a very crucial role in these kinds of a rural area where a large power grid is not available. The intermittent nature of distributed energy sources and the load uncertainties can create a power mismatch and can lead to frequency and voltage drop in rural isolated community MG. In order to avoid this, various intelligent load shedding techniques, installation of micro storage systems and coupling of neighbouring MGs can be adopted. Among these, the coupling of neighbouring MGs is the most feasible in the rural area where large grid power is not available. The interconnection of neighbouring MGs has raised concerns about the safety of operation, protection of critical infrastructure, the efficiency of power-sharing and most importantly, stable mode of operation. Many advanced control techniques have been proposed to enhance the load sharing and stability of the microgrid. Droop control is the most commonly used control technique for parallel operation of converters in order to share the load among the MGs. But most of them are in the presence of large grid power, where system voltage and frequency are controlled by the stiff grid. In a rural area, where grid power is not available, the frequency and voltage control become a fundamental issue to be addressed. Moreover, for accurate load sharing a high value of droop gain should be chosen as the R/X ratio of the rural network is very high, which makes the system unstable. Therefore, the choice of droop gains is often a trade-off between power-sharing and stability. In the context, the main focus of this PhD thesis is the fundamental investigations into control techniques of inverter-based standalone neighbouring microgrids for available power sharing. It aims to develop new and improved control techniques to enhance performance and power-sharing reliability of remote standalone Microgrids. In this thesis, a power management-based droop control is proposed for accurate power sharing according to the power availability in a particular MG. Inverters can have different power setpoints during the grid-connected mode, but in the standalone mode, they all need their power setpoints to be adjusted according to their power ratings. On the basis of this, a power management-based droop control strategy is developed to achieve the power-sharing among the neighbouring microgrids. The proposed method helps the MG inverters to share the power according to its ratings and availability, which does not restrict the inverters for equal power-sharing. The paralleled inverters in coupled MGs need to work in both interconnected mode and standalone mode and should be able to transfer between modes seamlessly. An enhanced droop control is proposed to maintain the frequency and voltage of the MGs to their nominal value, which also helps the neighbouring MGs for seamless (de)coupling. This thesis also presents a mathematical model of the interconnected neighbouring microgrid for stability and robustness analysis. Finally, a laboratory prototype model of two MGs is developed to test the effectiveness of the proposed control strategies

    Model Predictive based load frequency control studies in a deregulated environment

    Get PDF
    A fundamental objective in power system operations is to ensure reliablity and quality supply, and one key action that aids the accomplishment of this objective is the load frequency control (LFC). Primarily, LFC is an automatic action that aims to restore system frequency and net tie line power between a control area (CA) and its neighbours to their scheduled values; these quantities deviate when there is an imbalance between active power demand and supply in a synchrononus interconnection. This thesis aims to investigate a model predictive control (MPC) technique for LFC problems in a deregulated power system environment which has become a challenging task. In deregulated power interconnections, generation companies (GenCos) and distribution companies (DisCos) exist in each CA, and a transmission system operator (TSO) in each area is responsible for grid reliability. Each TSO handles LFC in its CA and ensures that market participants (GenCos and DisCos) in other CAs have an unbiased and open access to its network. As a result, there has been a rise in cross-border transac- tions between GenCos and DisCos for bulk energy and load matching (LM) and consequently large frequency fluctuations recently. DisCos can participate in LFC by making bilateral LM contracts with GenCos. An extensive review of the LFC literature, in terms of strengths and weaknesses of different control techniques, is presented to identify the key gaps. The review reveals that MPC can bring some benefits in the deregulated environment but its strengths are underexploited. Beginning with a small-scale system to provide insights into deregulated system modelling and predictive control design, a centralised MPC (CMPC)-based LFC scheme is proposed for a 2-area deregulated power system with measured (contracted) and unmeasured (uncontracted) load changes, where the areas are assumed to equally rated. The 2-area deregulated system is developed by incorporating bilateral LM contracts in the well known traditional LFC model as a new set of information. It is assumed that DisCos handle contracted load changes via bilateral LM contracts with GenCos and a TSO handles any variations outside the LM con- tracts (uncontracted) via a supplementary control scheme which represents the CMPC. The CMPC algorithm is developed as a tracking one, with an observer to provide estimates of the system states and uncontracted load changes. Also, input and incremental state constraints, which depict limits on LFC control efforts and generation rate constraints (GRC) respectively, are considered. A simulation comparison of the proposed CMPC solution and optimal linear quadratic regulator (LQR) demonstrates the efficacy of CMPC. Developing deregulated LFC models for larger systems with complex topologies and a large number of CAs/market participants could be laborious. Therefore, a novel generalised modelling framework for deregulated LFC is further proposed. The key benefits of the generalised framework is that it provides a relatively easy and systematic procedure to develop deregulated LFC benchmark systems irrespective of the interconnection size, topology and number of market participants. It also offers the flexibility of accommodating LFC studies where CAs have either equal (often assumed) or unequal (more pragmatic) rated capacities. A 7-area deregulated benchmark model is developed from the generalised framework to illustrate its usage and significance, and the importance of incorporating area rated capacities is demonstrated via simulations. In addition, a 4-area benchmark model is developed to provide a reader with more insight into how the generalised formulation can be applied to develop LFC models for an arbitrary network. Furthermore, to demonstrate the scalability of an MPC design procedure, the CMPC proposed previously is extended to examine the LFC problem of the 7-area system. Key novelties here are CAs are assumed to have unequal rated capacities, some GenCos do not participate in supplementary control, and the control input to each GenCo is computed separately rather than a single lumped input for each CA which is the norm in previous deregulated LFC studies. The separate control inputs is to ensure that the input constraints of each GenCo is accounted for in the CMPC in addition to their GRCs and this is achieved by incorporating the area participation factors of the GenCos explicitly in the CMPC cost function. A test conducted on the 7-area benchmark confirms the benefits of this new approach. CMPC shows great potential for deregulated LFC in terms of multiple inputs coordination, effective disturbance rejection and constraints handling; however it is unrealistic for practical interconnections were CAs are operated by different organisations and have large geographical separations. This limitation is addressed by investigating a distributed MPC (DMPC) technique for rejecting incremental load changes, convenient for a finite number of control areas (subsystems), and therefore represents a more practical control architecture for LFC in multi-area systems. The proposed DMPC is non-cooperative and developed to operate using output feedback, where distributed observers using local measurements are developed to provide uncontracted load changes and subsystem states’ estimates to local MPCs. Moreover, the DMPC, unlike other non-cooperative schemes, is simple and devoid of extensive offline parameter tuning. Using the 4-area and the 7-area benchmarks models developed as test systems for the proposed DMPC, some comparisons of simulations results, regulation cost and discussions are provided between the proposed DMPC and alternative MPC schemes

    Location Awareness in Multi-Agent Control of Distributed Energy Resources

    Get PDF
    The integration of Distributed Energy Resource (DER) technologies such as heat pumps, electric vehicles and small-scale generation into the electricity grid at the household level is limited by technical constraints. This work argues that location is an important aspect for the control and integration of DER and that network topology can inferred without the use of a centralised network model. It addresses DER integration challenges by presenting a novel approach that uses a decentralised multi-agent system where equipment controllers learn and use their location within the low-voltage section of the power system. Models of electrical networks exhibiting technical constraints were developed. Through theoretical analysis and real network data collection, various sources of location data were identified and new geographical and electrical techniques were developed for deriving network topology using Global Positioning System (GPS) and 24-hour voltage logs. The multi-agent system paradigm and societal structures were examined as an approach to a multi-stakeholder domain and congregations were used as an aid to decentralisation in a non-hierarchical, non-market-based approach. Through formal description of the agent attitude INTEND2, the novel technique of Intention Transfer was applied to an agent congregation to provide an opt-in, collaborative system. Test facilities for multi-agent systems were developed and culminated in a new embedded controller test platform that integrated a real-time dynamic electrical network simulator to provide a full-feedback system integrated with control hardware. Finally, a multi-agent control system was developed and implemented that used location data in providing demand-side response to a voltage excursion, with the goals of improving power quality, reducing generator disconnections, and deferring network reinforcement. The resulting communicating and self-organising energy agent community, as demonstrated on a unique hardware-in-the-loop platform, provides an application model and test facility to inspire agent-based, location-aware smart grid applications across the power systems domain

    Decoupled controllers for power systems

    Get PDF
    Imperial Users onl

    Circular economy design visioning: exploring industrial and urban symbiosis in South African cities.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Cities of tomorrow will be at the coalface of the complex challenges posed by climate change, e.g. resource scarcity. Climate change adaptation strategies will include circular economy (CE) practices (e.g. industrial and urban symbiosis) to increase the rate of recycling technical nutrients, in turn improving the resource efficiency of cities. The study investigates industrial and urban symbiosis in South Africa. In doing so, exploring technology enabled (i.e. cyber-physical-social ecosystems) CE solutions to designing out waste in South African cities. One of the key contributions of the research is the comprehensive synthesis and testing of an iterative problem structuring, theory building and design visioning (problem-theory-design) continuum to inform CE experimentation. A mixed methods design visioning approach is developed through an experiential and iterative design practice nested in a network of interdisciplinary theoretical constructs: 1) philosophical construct – Ecological Literacy (systems thinking), 2) techno-economic construct – Third Industrial Revolution (internet-of-things enabled general purpose technology platform), and Circular Economy (industrial and urban symbiosis), and 3) design construct – properties of Ecodesign derived from the dynamic renewable design of natural ecosystems. The research argues that to construct a meaningful CE transition experiment, a logical starting point is to distil key findings from a theoretically embedded case study to inform the design of a virtual experiment and simulation sketch. Through an embedded multiple case study approach the research investigates complex resource recovery dynamics in two key waste economy sub-sectors; industrial waste management and urban informal recycling sectors in the province of KwaZulu-Natal (KZN). The case studies provide an integrated method (i.e. synthesising quantitative and qualitative knowledge) for holistic and high-resolution problem structuring. From a systems thinking perspective, key leverage points (i.e. data, information sharing and infrastructure) are identified for potential policy and technology intervention. Learnings from the case studies inform policy recommendations and CE innovation. The findings from the industrial symbiosis (IS) case study illustrate that firms and supply chain networks recognise the environmental importance of improving industrial waste management practices, however they are locked-in to end-of-pipe solutions. Firms highlighted regulation, price sensitivity, customer pressure and top management as key drivers of pro-environmental behaviour change (e.g. waste beneficiation). The findings highlight the unrealised IS potential in the South vi Durban Basin. In addition, revealing significant barriers to IS, i.e. lack of information sharing between firms and a weak regulatory environment. To increase the detection, matching and emergence of IS relationships will command the dynamic co-production of codified resource flow data; herein a big data analytics approach can be employed to construct open source platforms for interfirm information (e.g. residual resource flows) sharing and knowledge production – an industrial commons internet. The urban symbiosis case study explores the informal recycling sector in KZN analysing the instrumental role of waste pickers as primary looping agents in recovering recyclable materials from post-consumer waste and increasing the supply of recyclable materials (e.g. cardboard, paper, plastic and metal) in the secondary resources economy. Waste pickers are an important link in recycling value chains; sorting, gathering and manually transporting recyclable materials to buy-back-centres and informal collection pick up points. The case study investigates how their efficiency can be improved to stimulate greater positive environmental impacts, create decent employment opportunities, and reduce waste management costs for municipalities. The findings from the case study on waste pickers are extrapolated in a CE design visioning exercise. From a systems level perspective, the research culminates in the sketch of a virtual circular city experiment; a cyber-physical social ecosystem (CPSE) designed to increase recycling rates in cities by addressing the infrastructural needs of waste pickers. The hardware, software and social ecosystem is built out of an internet-of-things (IoT) platform. Firstly, the IoT enabled infrastructural system improves material recovery efficiencies (of post-consumer recyclable materials) by increasing connectivity between waste pickers and waste collectors. Increased connectivity allows for looping and aggregating material stock and flow data. Secondly, the integrated hardware and software infrastructure provides an automated, digitised and decentralised buy-back-transfer service – delivered through connected and solar-powered collection nodes strategically distributed throughout the city in a mesh network configuration. Thirdly, the digital platform aggregates big data and employs advanced analytics to generate actionable residual resource intelligence, consequently enabling evidence-based decision making by key stakeholders, e.g. government agencies, industry associations, recyclers and material reprocessors. To further the research agenda, the next step is structuring a real-world transition experiment based on the virtual circular city design experiment, defined as, the internet-of-waste pickers (IoWP)

    The politics of system innovation for emerging technologies: understanding the uptake of off-grid renewable electricity in rural Chile

    Get PDF
    Access to sustainable energy in the developing world has become a fundamental challenge in development and environmental policy in the 21st Century, and rural electrification in developing countries constitutes a central element of access to energy goals. However, traditional ways of providing electricity to dispersed rural populations (i.e. through centralised electricity infrastructure or fuel-based on-site generation) is proving to be ineffective, inefficient and less sustainable than the use of renewable energy technologies (RETs) in off-grid settings. Such ‘system innovations’ for sustainable electricity services in rural areas are the focus of this study, which seeks to understand the reasons underlying success or failure in the diffusion of radical innovations. Embracing evolutionary and constructivist theories of socio-technical change and sustainability transitions, the thesis attempts to explain the use and diffusion of PV (photovoltaic) and wind technology in off-grid rural electrification over the last 20 years in Chile, a country where access to rural electricity has increased from 53% to 95%. RETs have contributed to nearly 10% of that increment. By using a framework that combines Strategic Niche Management (SNM), systemic intermediation and power, agency and conflicts in decision making, the thesis analyses the dynamics between the development and adaptation of new technologies and their influence in regime shift through replication, scaling up and translation of new socio-technical practices. The thesis attempts to shed light on processes affecting niche construction and it concludes that internal niche processes are relevant to understanding how radical innovations are structured and stabilised from the aggregation of projects. However, those processes are not only a managerial activity that can be steered but a politically underpinned (and iterative) process between specific (socio-political) settings. The study also highlights the role of systemic intermediaries, government and incumbent actors in the dynamic interaction between emergent niche dynamics and traditional ways of improving electricity access

    Wind Farm

    Get PDF
    During the last two decades, increase in electricity demand and environmental concern resulted in fast growth of power production from renewable sources. Wind power is one of the most efficient alternatives. Due to rapid development of wind turbine technology and increasing size of wind farms, wind power plays a significant part in the power production in some countries. However, fundamental differences exist between conventional thermal, hydro, and nuclear generation and wind power, such as different generation systems and the difficulty in controlling the primary movement of a wind turbine, due to the wind and its random fluctuations. These differences are reflected in the specific interaction of wind turbines with the power system. This book addresses a wide variety of issues regarding the integration of wind farms in power systems. The book contains 14 chapters divided into three parts. The first part outlines aspects related to the impact of the wind power generation on the electric system. In the second part, alternatives to mitigate problems of the wind farm integration are presented. Finally, the third part covers issues of modeling and simulation of wind power system
    corecore