13 research outputs found

    Microelectromechanical Systems and Devices

    Get PDF
    The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the demonstration of new devices and applications, and even in the creation of new fields of research and development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need for MEMS book covering these materials as well as the most important process steps in bulk micro-machining and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS based actuators

    A reconfigurable tactile display based on polymer MEMS technology

    Get PDF
    This research focuses on the development of polymer microfabrication technologies for the realization of two major components of a pneumatic tactile display: a microactuator array and a complementary microvalve (control) array. The concept, fabrication, and characterization of a kinematically-stabilized polymeric microbubble actuator (¡°endoskeletal microbubble actuator¡±) were presented. A systematic design and modeling procedure was carried out to generate an optimized geometry of the corrugated diaphragm to satisfy membrane deflection, force, and stability requirements set forth by the tactile display goals. A refreshable Braille cell as a tactile display prototype has been developed based on a 2x3 endoskeletal microbubble array and an array of commercial valves. The prototype can provide both a static display (which meets the displacement and force requirement of a Braille display) and vibratory tactile sensations. Along with the above capabilities, the device was designed to meet the criteria of lightness and compactness to permit portable operation. The design is scalable with respect to the number of tactile actuators while still being simple to fabricate. In order to further reduce the size and cost of the tactile display, a microvalve array can be integrated into the tactile display system to control the pneumatic fluid that actuates the microbubble actuator. A piezoelectrically-driven and hydraulically-amplified polymer microvalve has been designed, fabricated, and tested. An incompressible elastomer was used as a solid hydraulic medium to convert the small axial displacement of a piezoelectric actuator into a large valve head stroke while maintaining a large blocking force. The function of the microvalve as an on-off switch for a pneumatic microbubble tactile actuator was demonstrated. To further reduce the cost of the microvalve, a laterally-stacked multilayer PZT actuator has been fabricated using diced PZT multilayer, high aspect ratio SU-8 photolithography, and molding of electrically conductive polymer composite electrodes.Ph.D.Committee Chair: Allen,Mark; Committee Member: Bucknall,David; Committee Member: Book,Wayne; Committee Member: Griffin,Anselm; Committee Member: Yao,Donggan

    Towards rapid 3D direct manufacture of biomechanical microstructures

    Get PDF
    The field of stereolithography has developed rapidly over the last 20 years, and commercially available systems currently have sufficient resolution for use in microengineering applications. However, they have not as yet been fully exploited in this field. This thesis investigates the possible microengineering applications of microstereolithography systems, specifically in the areas of active microfluidic devices and microneedles. The fields of micropumps and microvalves, stereolithography and microneedles are reviewed, and a variety of test builds were fabricated using the EnvisionTEC Perfactory Mini Multi-Lens stereolithography system in order to define its capabilities. A number of microneedle geometries were considered. This number was narrowed down using finite element modelling, before another simulation was used to optimise these structures. 9 × 9 arrays of 400 μm tall, 300 μm base diameter microneedles were subjected to mechanical testing. Per needle failure forces of 0.263 and 0.243 N were recorded for the selected geometries, stepped cone and inverted trumpet. The 90 μm needle tips were subjected to between 30 and 32 MPa of pressure at their failure point - more than 10 times the required pressure to puncture average human skin. A range of monolithic micropumps were produced with integrated 4 mm diameter single-layer 70 μm-thick membranes used as the basis for a reciprocating displacement operating principle. The membranes were tested using an oscillating pneumatic actuation, and were found reliable (>1,000,000 cycles) up to 2.0 PSIG. Pneumatic single-membrane nozzle/diffuser rectified devices produced flow rates of up to 1,000 μl/min with backpressures of up to 375 Pa. Another device rectified using active membrane valves was found to self-prime, and produced backpressures of up to 4.9 kPa. These devices and structures show great promise for inclusion in complex, fully integrated and active microfluidic systems fabricated using microstereolithography alone, with implications for both cost of manufacture and lead time

    Piezoelectric microvalve for high pressure, high frequency hydraulic applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2002.Includes bibliographical references.A piezoelectrically-driven hydraulic amplification microvalve for use in high specific power hydraulic pumping applications was designed, fabricated, and experimentally characterized. High frequency, high force actuation capabilities were enabled through the incorporation of one or more bulk piezoelectric material elements beneath a micromachined annular tethered-piston structure. An hydraulic amplification mechanism was employed to amplify the limited stroke of this piezoelectrically-driven piston structure to a significantly larger motion (40-50x) of a micromachined valve membrane with attached valve cap. This valve cap was actuated through its stroke to open and close against a fluid orifice. These design features enabled the valve device to simultaneously meet a set of high frequency (1-10kHz), high pressure(0.1-IMPa), and large stroke (15-40,um) requirements that had not previously been satisfied by other microvalves presented in the literature. This research was carried out through a series of modeling, design, fabrication, assembly, and experimental testing tasks. Linear and non-linear modeling tools characterizing the structural deformations of the active valve sub-systems were developed. These tools enabled accurate prediction of real-time stresses along the micromachined valve membrane structure during deflection into its non-linear large-deflection regime. A systematic design procedure was developed to generate an active valve geometry to satisfy membrane stress limitations and valve power consumption requirements set forth by external hydraulic system performance goals.(cont.) Fabrication challenges, such as deep-reactive ion etching (DRIE) of the drive element and valve membrane structures, wafer-level silicon-to-silicon fusion bonding and silicon-to-glass anodic bonding operations, preparation and integration of piezoelectric material elements within the micromachined tethered piston structure, die-level assembly and bonding of silicon and glass dies, and filling of degassed fluid within the hydraulic amplification chamber were overcome. The active valve structural behavior and flow regulation capabilities were evaluated over a range of applied piezoelectric voltages, actuation frequencies, and differential pressures across the valve. For applied piezoelectric voltages up to 500Vpp at lkHz, the valve devices demonstrated amplification ratios of drive element deflection to valve cap deflection of 40-50x. These amplification ratios correlated within 5 - 10% of the model expectations. Flow regulation experiments proved that a peak average flow rate through the device of 0.21mL/s under a lkHz sinusoidal drive voltage of 500Vpp, with valve opening of 17pm, against a differential pressure of 260kPa could be obtained. Tests revealed that fluid-structural interactions between the valve cap and membrane components and flow instabilities (due to transition between the laminar and turbulent flow regimes through the valve orifice) limited the valve performance capabilities.by David C. Roberts.Ph.D

    Simulation of a Capacitive Micromachined Ultrasonic Transducer with a Parylene Membrane and Graphene Electrodes

    Get PDF
    Medical ultrasound technology accounts for over half of all imaging tests performed worldwide. In comparison to other methods, ultrasonic imaging is more portable and lower cost, and is becoming more accessible to remote regions where traditionally no medical imaging can be done. However, conventional ultrasonic imaging systems still rely on expensive PZT-based ultrasound probes that limit broader applications. In addition, the resolution of PZT based transducers is low due to the limitation in hand-fabrication methods of the piezoelectric ceramics. Capacitive Micromachined Ultrasonic Transducers (CMUTs) appears as an alternative to the piezoelectric (PZT) ceramic based transducer for ultrasound medical imaging. CMUTs show better ultrasound transducer design for batch fabrication, higher axial resolution of images, lower fabrication costs of the elements, ease of fabricating large arrays of cells using MEMS fabrication, and the extremely important potential to monolithically integrate the 2D transducer arrays directly with IC circuits for real-time 3D imaging. Currently most efforts on CMUTs are silicon based. Problems with current silicon-based CMUT designs include low pressure transmission and high-temperature fabrication processes. The pressure output from the silicon based CMUTs cells during transmission are too low when compared to commercially available PZT transducers, resulting in relatively blurry ultrasound images. The fabrication of the silicon-based cells, although easier than PZT transducers, still suffers from inevitable high temperature process and require specialized and expensive equipment. Manufacturing at an elevated temperature hinders the capability of fabricating front end analog processing IC circuits, thus it is difficult to achieve true 3D/4D imaging. Therefore novel low temperature fabrication with a low cost nature is needed. A polymer (Parylene) based CMUTs transducer has been investigated recently at UCF and aims to overcome limitations posted from the silicon based counterparts. This thesis describes the numerical simulation work and proposed fabrication steps of the Parylene based CMUT. The issue of transducer cost and pressure transmission is addressed by proposing the use of low cost and low temperature Chemical Vapor Deposition (CVD) fabrication of Parylene-C as the structural membrane plus graphene for the membrane electrodes. This study focuses mainly on comparing traditional silicon-based CMUT designs against the Parylene-C/Graphene CMUT based transducer, by using MEMS modules in COMSOL. For a fair comparison, single CMUT cells are modeled and held at a constant diameter and the similar operational frequency at the structural center. The numerical CMUT model is characterized for: collapse voltage, membrane deflection profile, center frequency, peak output pressure transmission over the membrane surface, and the sensitivity to the change in electrode surface charge. This study took the unique approaches in defining sensitivity of the CMUT by calculating the membrane response and the change in the electrode surface charge due to an incoming pressure wave. Optimal design has been achieved based on the simulation results. In comparison to silicon based CMUTs, the Parylene/Graphene based CMUT transducer produces 55% more in volume displacement and more than 35% in pressure output. The thesis has also laid out the detailed fabrication processes of the Parylene/Graphene based CMUT transducers. Parylene/Graphene based ultrasonic transducers can find wide applications in both medical imaging and Non destructive evaluation (NDE)

    Towards rapid 3D direct manufacture of biomechanical microstructures

    Get PDF
    The field of stereolithography has developed rapidly over the last 20 years, and commercially available systems currently have sufficient resolution for use in microengineering applications. However, they have not as yet been fully exploited in this field. This thesis investigates the possible microengineering applications of microstereolithography systems, specifically in the areas of active microfluidic devices and microneedles. The fields of micropumps and microvalves, stereolithography and microneedles are reviewed, and a variety of test builds were fabricated using the EnvisionTEC Perfactory Mini Multi-Lens stereolithography system in order to define its capabilities. A number of microneedle geometries were considered. This number was narrowed down using finite element modelling, before another simulation was used to optimise these structures. 9 × 9 arrays of 400 μm tall, 300 μm base diameter microneedles were subjected to mechanical testing. Per needle failure forces of 0.263 and 0.243 N were recorded for the selected geometries, stepped cone and inverted trumpet. The 90 μm needle tips were subjected to between 30 and 32 MPa of pressure at their failure point - more than 10 times the required pressure to puncture average human skin. A range of monolithic micropumps were produced with integrated 4 mm diameter single-layer 70 μm-thick membranes used as the basis for a reciprocating displacement operating principle. The membranes were tested using an oscillating pneumatic actuation, and were found reliable (>1,000,000 cycles) up to 2.0 PSIG. Pneumatic single-membrane nozzle/diffuser rectified devices produced flow rates of up to 1,000 μl/min with backpressures of up to 375 Pa. Another device rectified using active membrane valves was found to self-prime, and produced backpressures of up to 4.9 kPa. These devices and structures show great promise for inclusion in complex, fully integrated and active microfluidic systems fabricated using microstereolithography alone, with implications for both cost of manufacture and lead time.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC)GBUnited Kingdo

    EUROSENSORS XVII : book of abstracts

    Get PDF
    Fundação Calouste Gulbenkien (FCG).Fundação para a Ciência e a Tecnologia (FCT)

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    Modelling of a microfluid ultrasonic particle separator

    Get PDF
    Particles within an ultrasonic standing wave experience an acoustic force causing the particles tomove to certain positions within the acoustic field. This phenomenon can be used to manipulate particles and so provides a means to separate, concentrate or trap particles, cells or spores. The work described is applied to a micro-engineered flow-through device for processing small samples and incorporates a fluid filled chamber of depth typically between 100 and 200µm, and therefore approaches microfluidic dimensions. The successful design and subsequent performance of such devices rely on the predictability of particle trajectories which are influenced predominantly by acoustic and fluid flow fields. Therefore, the majority of this research seeks an understanding of the nature of these fields and, in turn, reliable simulation of particle trajectories.Computational fluid dynamics (CFD) modelling is used to develop a robust 2-dimensional model of the device’s microchannels and is used to predict the presence of eddy regions, associated with the etch fabrication techniques, which are likely to disrupt the separation process. Based on a geometric study, simulations and subsequent test results on a fabricated device have revealedgeometric modifications which minimise these eddy flows and promote the existence of laminar flow within the main channel of the device. Finite element analysis (FEA) provides a method to investigate the 2-dimensional characteristics of the acoustic field and reveals variations in acoustic pressure across the width of the device, giving rise to lateral radiation forces frequently reported in similar ultrasonic devices. This work investigates acoustic enclosure modes in 2 or 3-dimensions as a possible cause of these lateralvariations, with modelled results matching well with experiment. A particle force model has also been developed which predicts the motion of particles through the device, and by which concentration and separation performance may be calculated. This tool isused to investigate acoustic design, operating conditions and separation performance for both the micro-engineered device and a device based on a quarter-wavelength, providing valuable insight into various trends observed.The novelty in this work is the application of macro-scale numerical techniques to microengineered ultrasonic particle manipulators and the execution of an extensive analysis of the design and operation of such devices. These analyses have demonstrated, and therefore have explained, various phenomena associated with the fluid and acoustic fields, and how they influence particle separation performance. The development of similar devices can be aided by the use of the numerical simulation methods featured throughout this thesis

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018
    corecore