485 research outputs found

    Nonmonotone Barzilai-Borwein Gradient Algorithm for 1\ell_1-Regularized Nonsmooth Minimization in Compressive Sensing

    Full text link
    This paper is devoted to minimizing the sum of a smooth function and a nonsmooth 1\ell_1-regularized term. This problem as a special cases includes the 1\ell_1-regularized convex minimization problem in signal processing, compressive sensing, machine learning, data mining, etc. However, the non-differentiability of the 1\ell_1-norm causes more challenging especially in large problems encountered in many practical applications. This paper proposes, analyzes, and tests a Barzilai-Borwein gradient algorithm. At each iteration, the generated search direction enjoys descent property and can be easily derived by minimizing a local approximal quadratic model and simultaneously taking the favorable structure of the 1\ell_1-norm. Moreover, a nonmonotone line search technique is incorporated to find a suitable stepsize along this direction. The algorithm is easily performed, where the values of the objective function and the gradient of the smooth term are required at per-iteration. Under some conditions, the proposed algorithm is shown to be globally convergent. The limited experiments by using some nonconvex unconstrained problems from CUTEr library with additive 1\ell_1-regularization illustrate that the proposed algorithm performs quite well. Extensive experiments for 1\ell_1-regularized least squares problems in compressive sensing verify that our algorithm compares favorably with several state-of-the-art algorithms which are specifically designed in recent years.Comment: 20 page

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies

    Full text link
    Given the superposition of a low-rank matrix plus the product of a known fat compression matrix times a sparse matrix, the goal of this paper is to establish deterministic conditions under which exact recovery of the low-rank and sparse components becomes possible. This fundamental identifiability issue arises with traffic anomaly detection in backbone networks, and subsumes compressed sensing as well as the timely low-rank plus sparse matrix recovery tasks encountered in matrix decomposition problems. Leveraging the ability of 1\ell_1- and nuclear norms to recover sparse and low-rank matrices, a convex program is formulated to estimate the unknowns. Analysis and simulations confirm that the said convex program can recover the unknowns for sufficiently low-rank and sparse enough components, along with a compression matrix possessing an isometry property when restricted to operate on sparse vectors. When the low-rank, sparse, and compression matrices are drawn from certain random ensembles, it is established that exact recovery is possible with high probability. First-order algorithms are developed to solve the nonsmooth convex optimization problem with provable iteration complexity guarantees. Insightful tests with synthetic and real network data corroborate the effectiveness of the novel approach in unveiling traffic anomalies across flows and time, and its ability to outperform existing alternatives.Comment: 38 pages, submitted to the IEEE Transactions on Information Theor
    corecore