9,144 research outputs found

    Water Pipeline Leakage Detection Based on Machine Learning and Wireless Sensor Networks

    Get PDF
    The detection of water pipeline leakage is important to ensure that water supply networks can operate safely and conserve water resources. To address the lack of intelligent and the low efficiency of conventional leakage detection methods, this paper designs a leakage detection method based on machine learning and wireless sensor networks (WSNs). The system employs wireless sensors installed on pipelines to collect data and utilizes the 4G network to perform remote data transmission. A leakage triggered networking method is proposed to reduce the wireless sensor network’s energy consumption and prolong the system life cycle effectively. To enhance the precision and intelligence of leakage detection, we propose a leakage identification method that employs the intrinsic mode function, approximate entropy, and principal component analysis to construct a signal feature set and that uses a support vector machine (SVM) as a classifier to perform leakage detection. Simulation analysis and experimental results indicate that the proposed leakage identification method can effectively identify the water pipeline leakage and has lower energy consumption than the networking methods used in conventional wireless sensor networks

    Leakage Detection in Pipeline Based on Second Order Extended Kalman Filter Observer

    Get PDF
    In this paper, a new technique is proposed in order to detect, locate, as well as approximate the fluid leaks in a straight pipeline (without branching) by taking into consideration the pressure and flow evaluations at the ends of pipeline on the basis of data fusion from two methods: a steady-state approximation and Second-order Extended Kalman Filter (SEKF). The SEKF is on the basis of the second-order Taylor expansion of a nonlinear system unlike to the more popular First-order Extended Kalman Filter (FEKF). The suggested technique in this paper deals with just pressure head and flow rate evaluations at the ends of pipeline that has intrinsic sensor as well as process noise. A simulation example is given for demonstrating the validity of the proposed technique. It shows that the extended Kalman particle filter algorithm on the basis of the second-order Taylor expansion is effective and performs well in decreasing systematic deviations as well as running time

    Adaptive swarm optimisation assisted surrogate model for pipeline leak detection and characterisation.

    Get PDF
    Pipelines are often subject to leakage due to ageing, corrosion and weld defects. It is difficult to avoid pipeline leakage as the sources of leaks are diverse. Various pipeline leakage detection methods, including fibre optic, pressure point analysis and numerical modelling, have been proposed during the last decades. One major issue of these methods is distinguishing the leak signal without giving false alarms. Considering that the data obtained by these traditional methods are digital in nature, the machine learning model has been adopted to improve the accuracy of pipeline leakage detection. However, most of these methods rely on a large training dataset for accurate training models. It is difficult to obtain experimental data for accurate model training. Some of the reasons include the huge cost of an experimental setup for data collection to cover all possible scenarios, poor accessibility to the remote pipeline, and labour-intensive experiments. Moreover, datasets constructed from data acquired in laboratory or field tests are usually imbalanced, as leakage data samples are generated from artificial leaks. Computational fluid dynamics (CFD) offers the benefits of providing detailed and accurate pipeline leakage modelling, which may be difficult to obtain experimentally or with the aid of analytical approach. However, CFD simulation is typically time-consuming and computationally expensive, limiting its pertinence in real-time applications. In order to alleviate the high computational cost of CFD modelling, this study proposed a novel data sampling optimisation algorithm, called Adaptive Particle Swarm Optimisation Assisted Surrogate Model (PSOASM), to systematically select simulation scenarios for simulation in an adaptive and optimised manner. The algorithm was designed to place a new sample in a poorly sampled region or regions in parameter space of parametrised leakage scenarios, which the uniform sampling methods may easily miss. This was achieved using two criteria: population density of the training dataset and model prediction fitness value. The model prediction fitness value was used to enhance the global exploration capability of the surrogate model, while the population density of training data samples is beneficial to the local accuracy of the surrogate model. The proposed PSOASM was compared with four conventional sequential sampling approaches and tested on six commonly used benchmark functions in the literature. Different machine learning algorithms are explored with the developed model. The effect of the initial sample size on surrogate model performance was evaluated. Next, pipeline leakage detection analysis - with much emphasis on a multiphase flow system - was investigated in order to find the flow field parameters that provide pertinent indicators in pipeline leakage detection and characterisation. Plausible leak scenarios which may occur in the field were performed for the gas-liquid pipeline using a three-dimensional RANS CFD model. The perturbation of the pertinent flow field indicators for different leak scenarios is reported, which is expected to help in improving the understanding of multiphase flow behaviour induced by leaks. The results of the simulations were validated against the latest experimental and numerical data reported in the literature. The proposed surrogate model was later applied to pipeline leak detection and characterisation. The CFD modelling results showed that fluid flow parameters are pertinent indicators in pipeline leak detection. It was observed that upstream pipeline pressure could serve as a critical indicator for detecting leakage, even if the leak size is small. In contrast, the downstream flow rate is a dominant leakage indicator if the flow rate monitoring is chosen for leak detection. The results also reveal that when two leaks of different sizes co-occur in a single pipe, detecting the small leak becomes difficult if its size is below 25% of the large leak size. However, in the event of a double leak with equal dimensions, the leak closer to the pipe upstream is easier to detect. The results from all the analyses demonstrate the PSOASM algorithm's superiority over the well-known sequential sampling schemes employed for evaluation. The test results show that the PSOASM algorithm can be applied for pipeline leak detection with limited training datasets and provides a general framework for improving computational efficiency using adaptive surrogate modelling in various real-life applications

    Leak localization in water distribution networks using a mixed model-based/data-driven approach

    Get PDF
    “The final publication is available at Springer via http://dx.doi.org/10.1016/j.conengprac.2016.07.006”This paper proposes a new method for leak localization in water distribution networks (WDNs). In a first stage, residuals are obtained by comparing pressure measurements with the estimations provided by a WDN model. In a second stage, a classifier is applied to the residuals with the aim of determining the leak location. The classifier is trained with data generated by simulation of the WDN under different leak scenarios and uncertainty conditions. The proposed method is tested both by using synthetic and experimental data with real WDNs of different sizes. The comparison with the current existing approaches shows a performance improvement.Peer ReviewedPostprint (author's final draft

    Expert systems for automated maintenance of a Mars oxygen production system

    Get PDF
    A prototype expert system was developed for maintaining autonomous operation of a Mars oxygen production system. Normal operation conditions and failure modes according to certain desired criteria are tested and identified. Several schemes for failure detection and isolation using forward chaining, backward chaining, knowledge-based and rule-based are devised to perform several housekeeping functions. These functions include self-health checkout, an emergency shut down program, fault detection and conventional control activities. An effort was made to derive the dynamic model of the system using Bond-Graph technique in order to develop the model-based failure detection and isolation scheme by estimation method. Finally, computer simulations and experimental results demonstrated the feasibility of the expert system and a preliminary reliability analysis for the oxygen production system is also provided

    Localization Techniques for Water Pipeline Leakages: A Review

    Get PDF
    Pipeline leakages in water distribution network (WDN) is one of the prominent issues that has gain an interest among researchers in the past few years. Time and accuracy play an important role in leak localization as it has huge impact to the human population and economic point of view. The complexity of WDN has prompt numerous techniques and methods been introduced focusing on the accuracy and efficacy. In general, localization techniques can be divided into two broad categories; external and internal systems. This paper reviews some of the techniques that has been explored and proposed including the limitations of each techniques. Â

    Development of Ammonia Gas Leak Detection and Location Method

    Get PDF
    This paper proposed the gas for industrial ammonia leak diffusion model and the Gauss method of leakage localization. A set of wireless ammonia leak alarm system is composed of sensor node, network coordinator and host used in the industrial field was developed, the purpose is to reduce the loss of property caused by the leakage of ammonia industry. Using the monitoring system to carry out the ammonia leak location simulation measurement experiment, the result shows that the relative positioning error of the monitoring system is about 12%, which meets the needs of industrial production safety monitoring. Using the wireless sensor network to monitor the concentration of ammonia gas and locate the leakage source, it solves the problems of traditional wired alarm system, such as difficult wiring and weak expansibility, which helps to find the leak timely and provides a reference for the emergency rescue work

    A low-power, high-performance speech recognition accelerator

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Automatic Speech Recognition (ASR) is becoming increasingly ubiquitous, especially in the mobile segment. Fast and accurate ASR comes at high energy cost, not being affordable for the tiny power-budgeted mobile devices. Hardware acceleration reduces energy-consumption of ASR systems, while delivering high-performance. In this paper, we present an accelerator for largevocabulary, speaker-independent, continuous speech-recognition. It focuses on the Viterbi search algorithm representing the main bottleneck in an ASR system. The proposed design consists of innovative techniques to improve the memory subsystem, since memory is the main bottleneck for performance and power in these accelerators' design. It includes a prefetching scheme tailored to the needs of ASR systems that hides main memory latency for a large fraction of the memory accesses, negligibly impacting area. Additionally, we introduce a novel bandwidth-saving technique that removes off-chip memory accesses by 20 percent. Finally, we present a power saving technique that significantly reduces the leakage power of the accelerators scratchpad memories, providing between 8.5 and 29.2 percent reduction in entire power dissipation. Overall, the proposed design outperforms implementations running on the CPU by orders of magnitude, and achieves speedups between 1.7x and 5.9x for different speech decoders over a highly optimized CUDA implementation running on Geforce-GTX-980 GPU, while reducing the energy by 123-454x.Peer ReviewedPostprint (author's final draft
    • …
    corecore