2,482 research outputs found

    Efficient algorithm for solving semi-infinite programming problems and their applications to nonuniform filter bank designs

    Get PDF
    An efficient algorithm for solving semi-infinite programming problems is proposed in this paper. The index set is constructed by adding only one of the most violated points in a refined set of grid points. By applying this algorithm for solving the optimum nonuniform symmetric/antisymmetric linear phase finite-impulse-response (FIR) filter bank design problems, the time required to obtain a globally optimal solution is much reduced compared with that of the previous proposed algorith

    Design of nonuniform near allpass complementary FIR filters via a semi-infinite programming technique

    Get PDF
    In this paper, we consider the problem of designing a set of nonuniform near allpass complementary FIR filters. This problem can be formulated as a quadratic semi-infinite programming problem, where the objective is to minimize the sum of the ripple energy for the individual filters, subject to the passband and stopband specifications as well as to the allpass complementary specification. The dual parameterization method is used for solving the linear quadratic semi-infinite programming problem

    Optimal design of nonuniform FIR transmultiplexer using semi-infinite programming

    Get PDF
    This paper considers an optimum nonuniform FIR transmultiplexer design problem subject to specifications in the frequency domain. Our objective is to minimize the sum of the ripple energy for all the individual filters, subject to the specifications on amplitude and aliasing distortions, and to the passband and stopband specifications for the individual filters. This optimum nonuniform transmultiplexer design problem can be formulated as a quadratic semi-infinite programming problem. The dual parametrization algorithm is extended to this nonuniform transmultiplexer design problem. If the lengths of the filters are sufficiently long and the set of decimation integers is compatible, then a solution exists. Since the problem is formulated as a convex problem, if a solution exists, then the solution obtained is unique and the local solution is a global minimum

    On the spectral factor ambiguity of FIR energy compaction filter banks

    Get PDF
    This paper focuses on the design of signal-adapted finite-impulse response (FIR) paraunitary (PU) filter banks optimized for energy compaction (EC). The design of such filter banks has been shown in the literature to consist of the design of an optimal FIR compaction filter followed by an appropriate Karhunen-Loe/spl grave/ve transform (KLT). Despite this elegant construction, EC optimal filter banks have been shown to perform worse than common nonadapted filter banks for coding gain, contrary to intuition. Here, it is shown that this phenomenon is most likely due to the nonuniqueness of the compaction filter in terms of its spectral factors. This nonuniqueness results in a finite set of EC optimal filter banks. By choosing the spectral factor yielding the largest coding gain, it is shown that the resulting filter bank behaves more and more like the infinite-order principal components filter bank (PCFB) in terms of numerous objectives such as coding gain, multiresolution, noise reduction with zeroth-order Wiener filters in the subbands, and power minimization for discrete multitone (DMT)-type nonredundant transmultiplexers

    Discrete-time symmetric/antisymmetric FIR filter design

    Get PDF
    This invited seminar is discussed on discrete-time symmetric/antisymmetric FIR filter design

    Iterative greedy algorithm for solving the FIR paraunitary approximation problem

    Get PDF
    In this paper, a method for approximating a multi-input multi-output (MIMO) transfer function by a causal finite-impulse response (FIR) paraunitary (PU) system in a weighted least-squares sense is presented. Using a complete parameterization of FIR PU systems in terms of Householder-like building blocks, an iterative algorithm is proposed that is greedy in the sense that the observed mean-squared error at each iteration is guaranteed to not increase. For certain design problems in which there is a phase-type ambiguity in the desired response, which is formally defined in the paper, a phase feedback modification is proposed in which the phase of the FIR approximant is fed back to the desired response. With this modification in effect, it is shown that the resulting iterative algorithm not only still remains greedy, but also offers a better magnitude-type fit to the desired response. Simulation results show the usefulness and versatility of the proposed algorithm with respect to the design of principal component filter bank (PCFB)-like filter banks and the FIR PU interpolation problem. Concerning the PCFB design problem, it is shown that as the McMillan degree of the FIR PU approximant increases, the resulting filter bank behaves more and more like the infinite-order PCFB, consistent with intuition. In particular, this PCFB-like behavior is shown in terms of filter response shape, multiresolution, coding gain, noise reduction with zeroth-order Wiener filtering in the subbands, and power minimization for discrete multitone (DMT)-type transmultiplexers

    Design of FIR Filter with Discrete Coefficients considering Optimality

    Get PDF
    情報化社会においては,大量の情報をコンピュータによってどう経営に生かすかということは,企業経営において重要な課題である.本研究では,情報技術の一つであるデジタルフィルタ設計問題を取り扱う.特に,符号付き2進数を係数に持つFIRフィルタ設計問題において,半無限計画法と分枝限定法を組み合わせたあらたな解法を提案する.これによって,従来は近似解しか得られなかったものが,厳密な意味での最適解を得ることが可能となった,また,計算機実験によって,本設計法の有効性についても検証したので,報告する.In this paper, we propose a new design method of FIR filters with Signed Power of Two (SP2) coefficients. In the method proposed here, the design problem of FIR filters is formulated as an discrete semi-infinite linear programming problem (DSILP), and the DSILP is solved using a branch and bound technique. We will guarantee the optimality of the solution obtained. Hence, it is possible to obtain the optimal discrete coefficients. It is confirmed that the optimal coefficients of linear phase FIR filter with the SP2 coefficients could be designed fast with enough precisions by the computational experiments

    Pulse shaping approach to PAPR reduction for OFDM communication systems

    Get PDF
    One of the main drawbacks of the OFDM communication system is the high peak-to-average-power ratio (PAPR) of the transmitted signal. In this thesis: (i ) Optimal pulse shaping filter design is proposed to reduce the PAPR of the OFDM signal; (ii ) The level crossing rate theorem is used to derive an upper bound for the CCDF of PAPR of OFDM signal with pulse shaping; (iii ) The multiple filter design is proposed to reduce the PAPR of multiuser OFDM signal
    corecore