1,774 research outputs found

    Quantum learning: optimal classification of qubit states

    Full text link
    Pattern recognition is a central topic in Learning Theory with numerous applications such as voice and text recognition, image analysis, computer diagnosis. The statistical set-up in classification is the following: we are given an i.i.d. training set (X1,Y1),...(Xn,Yn)(X_{1},Y_{1}),... (X_{n},Y_{n}) where XiX_{i} represents a feature and Yi∈{0,1}Y_{i}\in \{0,1\} is a label attached to that feature. The underlying joint distribution of (X,Y)(X,Y) is unknown, but we can learn about it from the training set and we aim at devising low error classifiers f:X→Yf:X\to Y used to predict the label of new incoming features. Here we solve a quantum analogue of this problem, namely the classification of two arbitrary unknown qubit states. Given a number of `training' copies from each of the states, we would like to `learn' about them by performing a measurement on the training set. The outcome is then used to design mesurements for the classification of future systems with unknown labels. We find the asymptotically optimal classification strategy and show that typically, it performs strictly better than a plug-in strategy based on state estimation. The figure of merit is the excess risk which is the difference between the probability of error and the probability of error of the optimal measurement when the states are known, that is the Helstrom measurement. We show that the excess risk has rate n−1n^{-1} and compute the exact constant of the rate.Comment: 24 pages, 4 figure

    A flexible space-variant anisotropic regularisation for image restoration with automated parameter selection

    Get PDF
    We propose a new space-variant anisotropic regularisation term for variational image restoration, based on the statistical assumption that the gradients of the target image distribute locally according to a bivariate generalised Gaussian distribution. The highly flexible variational structure of the corresponding regulariser encodes several free parameters which hold the potential for faithfully modelling the local geometry in the image and describing local orientation preferences. For an automatic estimation of such parameters, we design a robust maximum likelihood approach and report results on its reliability on synthetic data and natural images. For the numerical solution of the corresponding image restoration model, we use an iterative algorithm based on the Alternating Direction Method of Multipliers (ADMM). A suitable preliminary variable splitting together with a novel result in multivariate non-convex proximal calculus yield a very efficient minimisation algorithm. Several numerical results showing significant quality-improvement of the proposed model with respect to some related state-of-the-art competitors are reported, in particular in terms of texture and detail preservation

    Bayesian inverse problems with partial observations

    Get PDF
    We study a nonparametric Bayesian approach to linear inverse problems under discrete observations. We use the discrete Fourier transform to convert our model into a truncated Gaussian sequence model, that is closely related to the classical Gaussian sequence model. Upon placing the truncated series prior on the unknown parameter, we show that as the number of observations n→∞,n\rightarrow\infty, the corresponding posterior distribution contracts around the true parameter at a rate depending on the smoothness of the true parameter and the prior, and the ill-posedness degree of the problem. Correct combinations of these values lead to optimal posterior contraction rates (up to logarithmic factors). Similarly, the frequentist coverage of Bayesian credible sets is shown to be dependent on a combination of smoothness of the true parameter and the prior, and the ill-posedness of the problem. Oversmoothing priors lead to zero coverage, while undersmoothing priors produce highly conservative results. Finally, we illustrate our theoretical results by numerical examples.Comment: 22 pages, 2 figure

    Contents lists available at ScienceDirect Pattern Recognition

    Get PDF
    journal homepage: www.elsevier.com/locate/pr Edge-preserving smoothing using a similarity measure in adaptive geodesi

    A general approach to posterior contraction in nonparametric inverse problems

    Full text link
    In this paper we propose a general method to derive an upper bound for the contraction rate of the posterior distribution for nonparametric inverse problems. We present a general theorem that allows us to derive con- traction rates for the parameter of interest from contraction rates of the related direct problem of estimating transformed parameter of interest. An interesting aspect of this approach is that it allows us to derive con- traction rates for priors that are not related to the singular value decomposition of the operator. We apply our result to several examples of linear inverse problems, both in the white noise sequence model and the nonparametric regression model, using priors based on the singular value decomposition of the operator, location-mixture priors and splines prior, and recover minimax adaptive contraction rates

    Random Matrices with Slow Correlation Decay

    Get PDF
    We consider large random matrices with a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent away from the spectral edges, generalizing the recent result of [arXiv:1604.08188] to allow slow correlation decay and arbitrary expectation. The main novel tool is a systematic diagrammatic control of a multivariate cumulant expansion.Comment: 41 pages, 1 figure. We corrected a typo in (4.1b

    Biomimetic Design for Efficient Robotic Performance in Dynamic Aquatic Environments - Survey

    Get PDF
    This manuscript is a review over the published articles on edge detection. At first, it provides theoretical background, and then reviews wide range of methods of edge detection in different categorizes. The review also studies the relationship between categories, and presents evaluations regarding to their application, performance, and implementation. It was stated that the edge detection methods structurally are a combination of image smoothing and image differentiation plus a post-processing for edge labelling. The image smoothing involves filters that reduce the noise, regularize the numerical computation, and provide a parametric representation of the image that works as a mathematical microscope to analyze it in different scales and increase the accuracy and reliability of edge detection. The image differentiation provides information of intensity transition in the image that is necessary to represent the position and strength of the edges and their orientation. The edge labelling calls for post-processing to suppress the false edges, link the dispread ones, and produce a uniform contour of objects

    Applying Evolutionary Optimisation to Robot Obstacle Avoidance

    Get PDF
    This paper presents an artificial evolutionbased method for stereo image analysis and its application to real-time obstacle detection and avoidance for a mobile robot. It uses the Parisian approach, which consists here in splitting the representation of the robot's environment into a large number of simple primitives, the "flies", which are evolved following a biologically inspired scheme and give a fast, low-cost solution to the obstacle detection problem in mobile robotics
    • …
    corecore