3,333 research outputs found

    Architecture, design, and modeling of the OPSnet asynchronous optical packet switching node

    Get PDF
    An all-optical packet-switched network supporting multiple services represents a long-term goal for network operators and service providers alike. The EPSRC-funded OPSnet project partnership addresses this issue from device through to network architecture perspectives with the key objective of the design, development, and demonstration of a fully operational asynchronous optical packet switch (OPS) suitable for 100 Gb/s dense-wavelength-division multiplexing (DWDM) operation. The OPS is built around a novel buffer and control architecture that has been shown to be highly flexible and to offer the promise of fair and consistent packet delivery at high load conditions with full support for quality of service (QoS) based on differentiated services over generalized multiprotocol label switching

    Node design in optical packet switched networks

    Get PDF

    Contention resolution in optical packet-switched cross-connects

    Get PDF

    A DRAM/SRAM memory scheme for fast packet buffers

    Get PDF
    We address the design of high-speed packet buffers for Internet routers. We use a general DRAM/SRAM architecture for which previous proposals can be seen as particular cases. For this architecture, large SRAMs are needed to sustain high line rates and a large number of interfaces. A novel algorithm for DRAM bank allocation is presented that reduces the SRAM size requirements of previously proposed schemes by almost an order of magnitude, without having memory fragmentation problems. A technological evaluation shows that our design can support thousands of queues for line rates up to 160 Gbps.Peer ReviewedPostprint (published version

    Control Plane Hardware Design for Optical Packet Switched Data Centre Networks

    Get PDF
    Optical packet switching for intra-data centre networks is key to addressing traffic requirements. Photonic integration and wavelength division multiplexing (WDM) can overcome bandwidth limits in switching systems. A promising technology to build a nanosecond-reconfigurable photonic-integrated switch, compatible with WDM, is the semiconductor optical amplifier (SOA). SOAs are typically used as gating elements in a broadcast-and-select (B\&S) configuration, to build an optical crossbar switch. For larger-size switching, a three-stage Clos network, based on crossbar nodes, is a viable architecture. However, the design of the switch control plane, is one of the barriers to packet switching; it should run on packet timescales, which becomes increasingly challenging as line rates get higher. The scheduler, used for the allocation of switch paths, limits control clock speed. To this end, the research contribution was the design of highly parallel hardware schedulers for crossbar and Clos network switches. On a field-programmable gate array (FPGA), the minimum scheduler clock period achieved was 5.0~ns and 5.4~ns, for a 32-port crossbar and Clos switch, respectively. By using parallel path allocation modules, one per Clos node, a minimum clock period of 7.0~ns was achieved, for a 256-port switch. For scheduler application-specific integrated circuit (ASIC) synthesis, this reduces to 2.0~ns; a record result enabling scalable packet switching. Furthermore, the control plane was demonstrated experimentally. Moreover, a cycle-accurate network emulator was developed to evaluate switch performance. Results showed a switch saturation throughput at a traffic load 60\% of capacity, with sub-microsecond packet latency, for a 256-port Clos switch, outperforming state-of-the-art optical packet switches
    • 

    corecore