26 research outputs found

    Human-powered vehicle capable of movement in the longitudinal and lateral directions

    Get PDF
    Human-powered vehicles, especially conventional wheelchairs, are essential tools for people with lower body disability. But their movement in a lateral direction is limited or impossible, which burdens users who want to change directions, especially in a narrow space. Thus, a human-powered vehicle that can move in a lateral direction is required. To move in any direction, many motor-driven omnidirectional vehicles have been proposed, but humans cannot manually power their mechanisms. To solve this problem, we are developing a human-powered vehicle, that is, driven by hands of the rider, that can move in both the longitudinal and lateral directions. This paper proposes such a vehicle, which has a mechanism to move in the lateral direction like people can do while walking. We designed it so that riders can operate its mechanism by analyzing the space reachable by the rider’s palms where they can effectively exert power. We constructed a prototype and conducted experiments to confirm that the vehicle moves as expected with relatively low effort. In the experiments, we confirmed the validity of vehicle operation by comparing the moving time of the vehicle with and without the lateral translation function for different travel distances and passage widths. Our results showed that the proposed vehicle moves more quickly or requires shorter moving distance in comparison with a conventional wheelchair because of the lateral movement function. In addition, we found that the threshold for utility of the function is whether the passage width is larger than the vehicle diagonal length

    Kinematics and analysis of driven sphere by rollers

    Get PDF
    九州工業大学博士学位論文 学位記番号:生工博甲第376号 学位授与年月日:令和2年3月25日第1章 序論|第2章 ローラ駆動される球体の運動学|第3章 球体運動学の検証|第4章 ロボカップへの適用|第5章 結論及び展望九州工業大学令和元年

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Research on Kinematic and Motion Control of a Roller-Driven Sphehe

    Get PDF
    九州工業大学博士学位論文 学位記番号:生工博甲第318号 学位授与年月日:平成30年3月23日第1章 序論|第2章 ローラ駆動される球体の運動学|第3章 提案する運動学の検証|第4章 実機実験による提案する運動学の検証|第5章 結論九州工業大学平成29年

    Social Intelligence Design 2007. Proceedings Sixth Workshop on Social Intelligence Design

    Get PDF

    Control de un robot móvil para el seguimiento de objetos mediante realimentación visual.

    Get PDF
    El fin del presente trabajo de titulación fue el desarrollo de un sistema de control de un robot móvil para el seguimiento de objetivos mediante retroalimentación visual. Un sistema de visión monocular montado sobre un robot móvil tipo uniciclo provee información limitada para tareas de seguimiento de objetos, muchas de las veces asumiendo ciertos criterios como la profundidad. Para solucionar el problema de la carencia del componente de profundidad, una composición de dos cámaras puede generar un desfase de visión para implementar sistemas de visión estereoscópica y añadir información a una imagen bidimensional. El sistema de control se basa en la modelación cinemática del sistema completo (robot móvil y estructura articular de las cámaras), así como del modelo cinemático de las cámaras. El robot móvil y la estructura articular utilizada están conformados por motores Dynamixel, descritos como actuadores inteligentes con redes de comunicación serial integrada. El diagrama de control que se presenta utiliza la modelación cinemática para determinar las velocidades adecuadas que todos los actuadores deben adoptar para el seguimiento de objetivos mediante retroalimentación visual en un ambiente estructurado. Esta propuesta se analiza mediante un simulador en Matlab que indica el correcto funcionamiento del sistema de control. Usando un prototipo de investigación, se obtienen los resultados experimentales que demuestran un adecuado funcionamiento del sistema de control para el seguimiento de objetivos mediante retroalimentación visual. Se valida el adecuado funcionamiento del mecanismo robótico y de los controladores propuestos, además las gráficas de errores y velocidades de control muestran la correcta ejecución en un entorno real. Se recomienda que el presente proyecto sea la base para proyectos futuros en los cuales se estudie el desempeño del sistema en ambientes no estructurados.The aim of the present titration work was the development of a control system of a mobile robot for the tracking of objectives through visual feedback. A monocular vision system mounted on a unicycle type mobile robot provides limited information for follow-up tasks of many times, assuming specific criteria such as depth, a composition of two cameras can generate a vision blur to implement stereoscopic vision systems and add information to a two-dimensional image. The control system based on the kinematic modeling of the complete system (mobile robot and joint structure of the cameras), as well as the kinematic model of the cameras. The mobile robot and the joint structure used are made up of Dynamixel motors, described as intelligent actuators with integrated serial communication networks. The control diagram presented uses kinematic modeling to determine the appropriate speeds that all actuators must adapt to track objectives through visual feedback in a structured environment. This proposal analyzed through a simulator in Matlab that indicates the correct functioning of the control system. Using a prototype, experimental results are obtained that demonstrate an adequate operation of the control system for the tracking of objectives through visual feedback. The proper functioning of the robotic mechanism and the proposed controllers is validated, besides the error graphs and control speeds show the correct execution in a real environment. It recommended that this project be the basis for plans in which the performance of the system in unstructured environments studied

    Control de un robot móvil para el seguimiento de objetos mediante realimentación visual.

    Get PDF
    El fin del presente trabajo de titulación fue el desarrollo de un sistema de control de un robot móvil para el seguimiento de objetivos mediante retroalimentación visual. Un sistema de visión monocular montado sobre un robot móvil tipo uniciclo provee información limitada para tareas de seguimiento de objetos, muchas de las veces asumiendo ciertos criterios como la profundidad. Para solucionar el problema de la carencia del componente de profundidad, una composición de dos cámaras puede generar un desfase de visión para implementar sistemas de visión estereoscópica y añadir información a una imagen bidimensional. El sistema de control se basa en la modelación cinemática del sistema completo (robot móvil y estructura articular de las cámaras), así como del modelo cinemático de las cámaras. El robot móvil y la estructura articular utilizada están conformados por motores Dynamixel, descritos como actuadores inteligentes con redes de comunicación serial integrada. El diagrama de control que se presenta utiliza la modelación cinemática para determinar las velocidades adecuadas que todos los actuadores deben adoptar para el seguimiento de objetivos mediante retroalimentación visual en un ambiente estructurado. Esta propuesta se analiza mediante un simulador en Matlab que indica el correcto funcionamiento del sistema de control. Usando un prototipo de investigación, se obtienen los resultados experimentales que demuestran un adecuado funcionamiento del sistema de control para el seguimiento de objetivos mediante retroalimentación visual. Se valida el adecuado funcionamiento del mecanismo robótico y de los controladores propuestos, además las gráficas de errores y velocidades de control muestran la correcta ejecución en un entorno real. Se recomienda que el presente proyecto sea la base para proyectos futuros en los cuales se estudie el desempeño del sistema en ambientes no estructurados.The aim of the present titration work was the development of a control system of a mobile robot for the tracking of objectives through visual feedback. A monocular vision system mounted on a unicycle type mobile robot provides limited information for follow-up tasks of many times, assuming specific criteria such as depth, a composition of two cameras can generate a vision blur to implement stereoscopic vision systems and add information to a two-dimensional image. The control system based on the kinematic modeling of the complete system (mobile robot and joint structure of the cameras), as well as the kinematic model of the cameras. The mobile robot and the joint structure used are made up of Dynamixel motors, described as intelligent actuators with integrated serial communication networks. The control diagram presented uses kinematic modeling to determine the appropriate speeds that all actuators must adapt to track objectives through visual feedback in a structured environment. This proposal analyzed through a simulator in Matlab that indicates the correct functioning of the control system. Using a prototype, experimental results are obtained that demonstrate an adequate operation of the control system for the tracking of objectives through visual feedback. The proper functioning of the robotic mechanism and the proposed controllers is validated, besides the error graphs and control speeds show the correct execution in a real environment. It recommended that this project be the basis for plans in which the performance of the system in unstructured environments studied

    Design, analysis and trajectory tracking control of underactuated mobile capsule robots.

    Get PDF
    The research on capsule robots (capsubots) has received attraction in recent years because of their compactness, simple structure and their potential use in medical diagnosis (e.g. capsule endoscopy), treatment and surgical assistance. The medical diagnostic capability of a capsule endoscope - which moves with the aid of visceral peristalsis - in the GI (gastro-intestinal) tract can be improved by adding propulsion to it e.g. legged, magnetic or capsubot-type propulsion. Driven by the above needs this thesis presents the design, analysis, trajectory tracking control and implementation of underactuated mobile capsule robots. These capsule robots can be modified and used in in-vivo medical applications. Researches on the capsubottype underactuated system focus on the stabilization of the robot and tracking the actuated configuration. However trajectory tracking control of an unactuated configuration (i.e. the robotmotion)was not considered in the literature though it is the primary requirement of any mobile robot and also crucial for many applications such as in-vivo inspection. Trajectory tracking control for this class of underactuated mechanical systems is still an open issue. This thesis presents a strategy to solve this issue. This thesis presents three robots namely a one-dimensional (1D) capsule robot, a 2D capsule robot and a 2D hybrid capsule robot with incremental capability. Two new acceleration profiles (utroque and contrarium) for the inner mass (IM) - internal moving part of the capsule robot - are proposed, analysed and implemented for the motion generation of the capsule robots. This thesis proposes a two-stage control strategy for the motion control of an underactuated capsule robot. A segment-wise trajectory tracking algorithm is developed for the 1D capsule robot. Theoretical analysis of the algorithm is presented and simulation is performed in the Matlab/Simulink environment based on the theoretical analysis. The algorithm is implemented in the developed capsule robot, the experimentation is performed and the results are critically analyzed. A trajectory tracking control algorithm combining segment-wise and behaviour-based control is proposed for the 2D capsule robot. Detailed theoretical analysis is presented and the simulation is performed to investigate the robustness of the trajectory tracking algorithm to friction uncertainties. A 2D capsule robot prototype is developed and the experimentation is performed. A novel 2D hybrid robot with four modes of operation - legless motion mode, legged motion mode, hybrid motion mode and anchoring mode - is also designed which uses one set of actuators in all operating modes. The theoretical analysis, modelling and simulation is performed. This thesis demonstrates effective ways of propulsion for in-vivo applications. The outer-shape of the 1D and 2D capsule robots can be customized according to the requirement of the applications, as the propulsion mechanisms are completely internal. These robots are also hermetically sealable (enclosed) which is a safety feature for the in-vivo robots. This thesis addresses the trajectory tracking control of the capsubot-type robot for the first time. During the experimentation the 1D robot prototype tracks the desired position trajectory with some error (relative mean absolute error: 16%). The trajectory tracking performance for the 2D capsubot improves as the segment time decreases whereas tracking performance declines as the friction uncertainty increases. The theoretical analysis, simulation and experimental results validate the proposed acceleration profiles and trajectory tracking control algorithms. The designed hybrid robot combines the best aspects of the legless and legged motions. The hybrid robot is capable of stopping in a suspected region and remain stationary for a prolonged observation for the in-vivo applications while withstanding the visceral peristalsis
    corecore