14,174 research outputs found

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Resilient Observer Design for Discrete-Time Nonlinear Systems with General Criteria

    Get PDF
    A class of discrete-time nonlinear system and measurement equations having incrementally conic nonlinearities and finite energy disturbances is considered. A linear matrix inequality based resilient observer design approach is presented to guarantee the satisfaction of a variety of performance criteria ranging from simple estimation error boundedness to dissipativity in the presence of bounded perturbations on the gain. Some simulation examples are included to illustrate the proposed design methodology

    Synthesis of Minimal Error Control Software

    Full text link
    Software implementations of controllers for physical systems are at the core of many embedded systems. The design of controllers uses the theory of dynamical systems to construct a mathematical control law that ensures that the controlled system has certain properties, such as asymptotic convergence to an equilibrium point, while optimizing some performance criteria. However, owing to quantization errors arising from the use of fixed-point arithmetic, the implementation of this control law can only guarantee practical stability: under the actions of the implementation, the trajectories of the controlled system converge to a bounded set around the equilibrium point, and the size of the bounded set is proportional to the error in the implementation. The problem of verifying whether a controller implementation achieves practical stability for a given bounded set has been studied before. In this paper, we change the emphasis from verification to automatic synthesis. Using synthesis, the need for formal verification can be considerably reduced thereby reducing the design time as well as design cost of embedded control software. We give a methodology and a tool to synthesize embedded control software that is Pareto optimal w.r.t. both performance criteria and practical stability regions. Our technique is a combination of static analysis to estimate quantization errors for specific controller implementations and stochastic local search over the space of possible controllers using particle swarm optimization. The effectiveness of our technique is illustrated using examples of various standard control systems: in most examples, we achieve controllers with close LQR-LQG performance but with implementation errors, hence regions of practical stability, several times as small.Comment: 18 pages, 2 figure

    3 sampled-data control of nonlinear systems

    No full text
    This chapter provides some of the main ideas resulting from recent developments in sampled-data control of nonlinear systems. We have tried to bring the basic parts of the new developments within the comfortable grasp of graduate students. Instead of presenting the more general results that are available in the literature, we opted to present their less general versions that are easier to understand and whose proofs are easier to follow. We note that some of the proofs we present have not appeared in the literature in this simplified form. Hence, we believe that this chapter will serve as an important reference for students and researchers that are willing to learn about this area of research

    An LMI Approach to Discrete-Time Observer Design with Stochastic Resilience

    Get PDF
    Much of the recent work on robust control or observer design has focused on preservation of stability of the controlled system or the convergence of the observer in the presence of parameter perturbations in the plant or the measurement model. The present work addresses the important problem of stochastic resilience or non-fragility of a discrete-time Luenberger observer which is the maintenance of convergence and/or performance when the observer is erroneously implemented possibly due to computational errors i.e. round off errors in digital implementation or sensor errors, etc. A common linear matrix inequality framework is presented to address the stochastic resilient design problem for various performance criteria in the implementation based on the knowledge of an upper bound on the variance of the random error in the observer gain. Present results are compared to earlier designs for stochastic robustness. Illustrative examples are given to complement the theoretical results
    corecore