1,163 research outputs found

    Analysis and design of physical-layer network coding for relay networks

    Full text link
    Physical-layer network coding (PNC) is a technique to make use of interference in wireless transmissions to boost the system throughput. In a PNC employed relay network, the relay node directly recovers and transmits a linear combination of its received messages in the physical layer. It has been shown that PNC can achieve near information-capacity rates. PNC is a new information exchange scheme introduced in wireless transmission. In practice, transmitters and receivers need to be designed and optimized, to achieve fast and reliable information exchange. Thus, we would like to ask: How to design the PNC schemes to achieve fast and reliable information exchange? In this thesis, we address this question from the following works: Firstly, we studied channel-uncoded PNC in two-way relay fading channels with QPSK modulation. The computation error probability for computing network coded messages at the relay is derived. We then optimized the network coding functions at the relay to improve the error rate performance. We then worked on channel coded PNC. The codes we studied include classical binary code, modern codes, and lattice codes. We analyzed the distance spectra of channel-coded PNC schemes with classical binary codes, to derive upper bounds for error rates of computing network coded messages at the relay. We designed and optimized irregular repeat-accumulate coded PNC. We modified the conventional extrinsic information transfer chart in the optimization process to suit the superimposed signal received at the relay. We analyzed and designed Eisenstein integer based lattice coded PNC in multi-way relay fading channels, to derive error rate performance bounds of computing network coded messages. Finally we extended our work to multi-way relay channels. We proposed a opportunistic transmission scheme for a pair-wise transmission PNC in a single-input single-output multi-way relay channel, to improve the sum-rate at the relay. The error performance of computing network coded messages at the relay is also improved. We optimized the uplink/downlink channel usage for multi-input multi-output multi-way relay channels with PNC to maximize the degrees of freedom capacity. We also showed that the system sum-rate can be further improved by a proposed iterative optimization algorithm

    Analysis and construction of full-diversity joint network-LDPC codes for cooperative communications

    Get PDF
    Cooperative communication is a well known technique to yield transmit diversity and network coding can increase the spectral efficiency. These two techniques can be combined to achieve a double diversity order for a maximum coding rate Rc = 2/3 on the Multiple Access Relay Channel (MARC); Transmit diversity is necessary in harsh environments to reduce the required transmit power for achieving a given error performance at a certain transmission rate. In networks; where two sources share a common relay in their transmission to the destination. However; codes have to be carefully designed to obtain the intrinsic diversity offered by the MARC. This paper presents the principles to design a family of full-diversity LDPC codes with maximum rate. Simulation of the word error rate performance of the new proposed family of LDPC codes for the MARC confirms the full-diversity

    Rateless Space-Time Block Codes for 5G Wireless Communication Systems

    Get PDF
    This chapter presents a rateless space-time block code (RSTBC) for massive multiple-input multiple-output (MIMO) wireless communication systems. We discuss the principles of rateless coding compared to the fixed-rate channel codes. A literature review of rateless codes (RCs) is also addressed. Furthermore, the chapter illustrates the basis of RSTBC deployments in massive MIMO transmissions over lossy wireless channels. In such channels, data may be lost or are not decodable at the receiver end due to a variety of factors such as channel losses or pilot contamination. Massive MIMO is a breakthrough wireless transmission technique proposed for future wireless standards due to its spectrum and energy efficiencies. We show that RSTBC guarantees the reliability of the system in such highly lossy channels. Moreover, pilot contamination (PC) constitutes a particularly significant impairment in reciprocity-based multi-cell systems. PC results from the non-orthogonality of the pilot sequences in different cells. In this chapter, RSTBC is also employed in the downlink transmission of a multi-cell massive MIMO system to mitigate the effects of signal-to-interference-and-noise ratio (SINR) degradation resulting from PC. We conclude that RSTBC can effectively mitigate such interference. Hence, RSTBC is a strong candidate for the upcoming 5G wireless communication systems

    Multiple Parallel Concatenated Gallager Codes and Their Applications

    Get PDF
    Due to the increasing demand of high data rate of modern wireless communications, there is a significant interest in error control coding. It now plays a significant role in digital communication systems in order to overcome the weaknesses in communication channels. This thesis presents a comprehensive investigation of a class of error control codes known as Multiple Parallel Concatenated Gallager Codes (MPCGCs) obtained by the parallel concatenation of well-designed LDPC codes. MPCGCs are constructed by breaking a long and high complexity of conventional single LDPC code into three or four smaller and lower complexity LDPC codes. This design of MPCGCs is simplified as the option of selecting the component codes completely at random based on a single parameter of Mean Column Weight (MCW). MPCGCs offer flexibility and scope for improving coding performance in theoretical and practical implementation. The performance of MPCGCs is explored by evaluating these codes for both AWGN and flat Rayleigh fading channels and investigating the puncturing of these codes by a proposed novel and efficient puncturing methods for improving the coding performance. Another investigating in the deployment of MPCGCs by enhancing the performance of WiMAX system. The bit error performances are compared and the results confirm that the proposed MPCGCs-WiMAX based IEEE 802.16 standard physical layer system provides better gain compared to the single conventional LDPC-WiMAX system. The incorporation of Quasi-Cyclic QC-LDPC codes in the MPCGC structure (called QC-MPCGC) is shown to improve the overall BER performance of MPCGCs with reduced overall decoding complexity and improved flexibility by using Layered belief propagation decoding instead of the sum-product algorithm (SPA). A proposed MIMO-MPCGC structure with both a 2X2 MIMO and 2X4 MIMO configurations is developed in this thesis and shown to improve the BER performance over fading channels over the conventional LDPC structure

    A proxy for reliable 5G (and beyond) mmWave communications. Contributions to multi-path scheduling for a reliability focused mmWave proxy

    Get PDF
    Reliable, consistent and very high data rate mobile communication will become especially important for future services such as, among other things, future emergency communication needs. MmWave technology provides the needed capacity, however, lacks the reliability due to the abrupt capacity changes any one path experiences. Intelligently making use of varying numbers of available mmWave paths, efficiently scheduling data across the paths, perhaps even through multi-operator agreements; and balancing mobile power consumption with path costs and the need for reliable consistent quality will be critical to attaining this aim. In this thesis, the multipath scheduling problem in a mmWave proxy when the paths have dynamically changing path characteristics is considered. To address this problem, a hybrid scheduler is proposed, the performance of which is compared with the Round Robin scheduler, Random scheduler and the Highest Capacity First scheduler. Forward error correction is explored as a means of enhancing the scheduling. Keywords:Multipath Scheduling, mmWave Proxy, Forward Error Correction, beyond 5G
    • …
    corecore