2,385 research outputs found

    Advance control strategies for Maglev suspension systems

    Get PDF
    The Birmingham Maglev developed over fifteen years ago has successfully demonstrated the inherent advantages of low speed maglev over comparable wheeled systems. It remains the only commercially operational Maglev in the world today. To develop the next generation of Maglev vehicles which will overcome some of the limitations of the Birmingham system, such as chassis length and cost, the following issues are addressed in this thesis. 1) The possibility of interaction between the chassis resonant frequencies and the suspension control system causing poor ride quality and at worst instability, are formally analysed. In the Birmingham vehicle a stiff chassis (fundamental bending mode 40Hz) is used avoiding significant interaction with the suspension controller. Using advanced control strategies the low frequency chassis resonances can be controlled allowing a vehicle structure to be used with a fundamental bending mode of about 12Hz. 2) A modem control strategy is developed which delivers an improved ride quality compared with the present classical control system despite having to operate with a 'soft' chassis. Kalman filters are digitally implemented and conclusions drawn about their performance. The classical control strategy is also successfully demonstrated on a 3 m long 'flexible beam' rig. 3) An associated Maglev suspension problem for the response to ramp inputs such as the transition onto gradients which causes either a large steady state tracking error or a worsening ride quality is addressed by modern control theory using integral feedback techniques and classical theory using third order filters. These controllers are globally optimised by a multi-objective parameter optimisation system which formally considers the conflicts inherent in a suspension system between response to stochastic inputs and deterministic inputs

    NASA micromin computer Monthly progress letter, Jan. 1967

    Get PDF
    Microminiature circuit development for flight control computer

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems
    • …
    corecore