260 research outputs found

    Development of turnable and miniature microwave filters for modern wireless communication

    Get PDF
    Due to the increasing demand for new wireless services and applications, the high level of integration and the coexistence of multi-standard (MS) or multi-band operations into a single device are becoming defining trends in designing microwave filters. This has driven considerable technological advances in reconfigurable/tunable and miniaturized filters. More specifically, reconfigurable/tunable filters that tune to different frequency bands instead of classical filter banks have great potential to significantly reduce the system size and complexity; while reducing the filter size becomes essential to achieve the highest degree of integration density in compact and portable wireless devices. In the light of this scenario, the objective of this dissertation is to develop the new design technologies, concepts and filtering configurations for tunable microstrip filters and compact passive microwave filters. To this aim, this dissertation is divided into two main parts. The first part (Part I) focuses on the designs of novel varactor-tuned microstrip filters with advanced performances. In this aspect, new topologies for realizing tunable lowpass and highpass filters are firstly developed. State-of-the-art performances, including wide tuning range, high selectivity with multiple transmission zeros, low insertion loss and compact size for all the tuning states are obtained in both of these filters. Secondly, two novel classes of tunable bandpass filters are presented. One of them is designed based on varactor-loaded parallel-coupled microstrip lines (PCML) and short-circuited stubs, which allows the lower passband edge together with two transmission zeros located around the lower passband skirt to be reconfigured separately. While the other tunable bandpass filter is iii constructed by the combination of tunable bandpass and lowpass filters, featuring both centre frequency and bandwidth tunabilities, as well as high selectivity with abundant transmission zeros. Furthermore, a new concept of tunable lossy filter is demonstrated, which attempts to achieve an equivalent high-Q tunable performance by using low-Q resonators. This concept makes the presented tunable combline filter interesting for some frequency-agile applications in which the low in-band loss variation and high selectivity are much desired while the absolute insertion loss can be a tradeoff. The second part (Part II) is devoted to the design of miniaturized passive microwave filters with improved characteristics. For this, the concept of artificial right-handed and left-handed transmission lines are applied to the signal interference filtering topology, which results in a compact circuit size and good out-of-band performance. In particular, for a further size reduction, such filter is implemented in the forms of multilayered structure by using liquid crystal polymer (LCP) technology. Additionally, another two types of miniaturized bandpass filters using stepped impedance resonators are demonstrated, which are implemented based on different fabrication processes (i.e. LCP bonded multilayer PCB technology and a standard planar PCB technology). Among their main features, the compact size, wide passband, broad stopband with multiple transmission zeros and circuit simplicity are highlighted. For all the proposed design techniques and filtering structures, exhaustive theoretical analyses are done, and design equations and guide rules are provided. Furthermore, all the proposed schemes and/or ideas have been experimentally validated through the design, implementation and measurement of different filters. The fabrication processes of multilayer technology utilized: liquid crystal polymer (LCP) technology and liquid crystal polymer (LCP) bonded multilayer printed circuit board (PCB) technology, are also demonstrated for reference. All of the results achieved in this dissertation make the proposed filters very attractive for their use in modern wireless communication systems.MultiWaves Project (PIRSES-GA-2010-247532) of the Seventh Framework Programme (FP7), European Commission

    Development of tunable and miniature microwave filters for modern wireless communications

    Get PDF
    Due to the increasing demand for new wireless services and applications, the high level of integration and the coexistence of multi-standard (MS) or multi-band operations into a single device are becoming defining trends in designing microwave filters. This has driven considerable technological advances in reconfigurable/tunable and miniaturized filters. More specifically, reconfigurable/tunable filters that tune to different frequency bands instead of classical filter banks have great potential to significantly reduce the system size and complexity; while reducing the filter size becomes essential to achieve the highest degree of integration density in compact and portable wireless devices. In the light of this scenario, the objective of this dissertation is to develop the new design technologies, concepts and filtering configurations for tunable microstrip filters and compact passive microwave filters. To this aim, this dissertation is divided into two main parts. The first part (Part I) focuses on the designs of novel varactor-tuned microstrip filters with advanced performances. In this aspect, new topologies for realizing tunable lowpass and highpass filters are firstly developed. State-of-the-art performances, including wide tuning range, high selectivity with multiple transmission zeros, low insertion loss and compact size for all the tuning states are obtained in both of these filters. Secondly, two novel classes of tunable bandpass filters are presented. One of them is designed based on varactor-loaded parallel-coupled microstrip lines (PCML) and short-circuited stubs, which allows the lower passband edge together with two transmission zeros located around the lower passband skirt to be reconfigured separately. While the other tunable bandpass filter is constructed by the combination of tunable bandpass and lowpass filters, featuring both centre frequency and bandwidth tunabilities, as well as high selectivity with abundant transmission zeros. Furthermore, a new concept of tunable lossy filter is demonstrated, which attempts to achieve an equivalent high-Q tunable performance by using low-Q resonators. This concept makes the presented tunable combline filter interesting for some frequency-agile applications in which the low in-band loss variation and high selectivity are much desired while the absolute insertion loss can be a tradeoff. The second part (Part II) is devoted to the design of miniaturized passive microwave filters with improved characteristics. For this, the concept of artificial right-handed and left-handed transmission lines are applied to the signal interference filtering topology, which results in a compact circuit size and good out-of-band performance. In particular, for a further size reduction, such filter is implemented in the forms of multilayered structure by using liquid crystal polymer (LCP) technology. Additionally, another two types of miniaturized bandpass filters using stepped impedance resonators are demonstrated, which are implemented based on different fabrication processes (i.e. LCP bonded multilayer PCB technology and a standard planar PCB technology). Among their main features, the compact size, wide passband, broad stopband with multiple transmission zeros and circuit simplicity are highlighted. For all the proposed design techniques and filtering structures, exhaustive theoretical analyses are done, and design equations and guide rules are provided. Furthermore, all the proposed schemes and/or ideas have been experimentally validated through the design, implementation and measurement of different filters. The fabrication processes of multilayer technology utilized: liquid crystal polymer (LCP) technology and liquid crystal polymer (LCP) bonded multilayer printed circuit board (PCB) technology, are also demonstrated for reference. All of the results achieved in this dissertation make the proposed filters very attractive for their use in modern wireless communication systems

    Design of Miniaturized Substrate Integrated Filters Using Aggressive Space Mapping

    Full text link
    [EN] An optimization procedure for the design of miniaturized substrate integrated quasi-lumped filters based on aggressive space mapping techniques is presented in this paper. A gradient-descent approach based on a lossy coarse model is employed. Thus, a 3-pole bandpass filter response centered at 10 GHz is designed, manufactured and measured, showing the validity of the technique even if strong dependencies between the different electrical and physical parameters are present.Martínez Pérez, JD.; Sirci, S.; Boria Esbert, VE. (2019). Design of Miniaturized Substrate Integrated Filters Using Aggressive Space Mapping. IEEE. 1-4. https://doi.org/10.1109/NEMO.2019.8853742S1

    Compact 3D monolithic microwave integrated circuit bandpass filter based on meander resonator for 5G millimeter-wave

    Get PDF
    Bandpass filters for millimeter-wave band applications are typically designed using resonators. However, the design of a multilayer coplanar waveguide (CPW) monolithic microwave integrated circuit (MMIC) bandpass filter for 5G millimeter-wave band, n257 with operating frequencies from 26.5 to 29.5 GHz is still not available. Therefore, in this work, a compact bandpass filter for 5G millimeter-wave application was designed with multilayer CPW MMIC bandpass filter based on a meander resonator. The meander resonator of the bandpass filter was designed using low-loss multilayer CPW lines. In designing the bandpass filter, the resonator length and perturbation was utilized to optimize the resonance and bandwidth, and meander resonator was used to miniaturize the bandpass filter. As result, a compact bandpass filter with size of 0.75×0.75 mm2 for 5G millimeter-wave band n257 was achieved. It has bandwidth of 3 GHz, an insertion loss of -2.87 dB and a return loss of -11.1 dB at frequency 28 GHz

    Miniaturization Trends in Substrate Integrated Waveguide (SIW) Filters: A Review

    Get PDF
    This review provides an overview of the technological advancements and miniaturization trends in Substrate Integrated Waveguide (SIW) filters. SIW is an emerging planar waveguide structure for the transmission of electromagnetic (EM) waves. SIW structure consists of two parallel copper plates which are connected by a series of vias or continuous perfect electric conductor (PEC) channels. SIW is a suitable choice for designing and developing the microwave and millimetre-wave (mm-Wave) radio frequency (RF) components: because it has compact dimensions, low insertion loss, high-quality factor (QF), and can easily integrate with planar RF components. SIW technology enjoys the advantages of the classical bulky waveguides in a planar structure; thus is a promising choice for microwave and mm-Wave RF components

    Synthesis of multi-layer frequency selective surfaces of quasi-optical systems

    Get PDF
    This thesis investigate design techniques for multilayer Frequency Selective Surfaces (FSS) and its applications in quasi-optical (QO) systems. Design challenges that involve higher order filter and practical implementation of multilayer FSS at higher frequencies are reviewed. Multilayer FSS structures are commonly realized by cascading two or more FSS panel to achieve higher order responses, which usually rely on dielectric substrates to support the FSS arrays. It is noted that existing design approaches involved elaborate manufacturing processes as well as the requirement of custom dielectric thickness for the implementation of multilayer FSS. These design issues poses practical problems in the realization of multilayer FSS of higher order and its demonstration at higher frequencies. Furthermore, realization of higher order multilayer FSS with custom dielectric thicknesses are not feasible with low cost Printed Circuit Board (PCB) technology. As a result of this investigation, a novel design and synthesis technique is developed to address the aforementioned design issues. Equivalent circuit modelling and full wave electromagnetic simulation are employed for this purpose. The developed design technique enable practical realization of QO filter to have all transmission lines of predefined fix length. As a result, the proposed technique is able to resolve the limited availability of custom dielectric thicknesses, thus enable demonstration of multilayer FSS of higher order at higher frequencies. Particularly, the proposed design methodology allow rectification by design to adapt to any small variations in the dielectric thicknesses. Subsequently, based on this technique, a novel QO reflector design is developed to demonstrate proof of concept for time delay multiplexing that are employed in a radar system. The implementation of time delay between two polarization multiplexed beams initially requires true time delay structures that are difficult to integrate due to their electrically large structure. In order to address this problem, the designed QO reflector is able to perform same functionalities, i.e. a significant group delay difference for the two orthogonal linear polarization. Specifically, the designed QO reflector has the capability to de-multiplex an incoming wave into two linear polarized waves, whereby one of the reflected wave is time delayed while the other wave is unaffected. A synthesis method for QO reflector design with time delay multiplexing has been presented. Based on the design procedures reported in this thesis, prototypes for both QO filter and QO reflector of fourth order has been developed to operate at 15 GHz with 5% and 3.5% bandwidth respectively. The performances of the developed prototypes are verified with free-space measurement setup. The measured insertion loss of the QO filter is observed to be in the range of 0.5 dB – 2.83 dB, while the measured return loss of the QO reflector is the range of 1.5 dB – 2.3 dB. In order to demonstrate the effect of the group delay from the QO reflector, frequency domain analysis is performed by post-processing the measured data to obtain the required time domain signals. Overall the experimental measurement results corroborate well with both full-wave and circuit simulation

    Advanced microwave miniature and lossy tunable filters for wireless communication applications

    Get PDF
    Microwave filters play very important roles in many RF/microwave applications, which are employed to separate or combine different frequencies. Emerging applications, such as wireless communications, challenge the design of microwave filters with more functionalities and higher performance, such as reconfigurable or tunable, compact size, light weight and lower cost. In order to meet the increasing challenge requirements, the objective of this dissertation is to develop new multilayer miniaturized filters, compact lossy microstrip filters, and reconfigurable lossy filters. To achieve this, this dissertation is divided into three main parts. The first part focuses on the design of novel miniature bandpass filter with improved performance. In this aspect, a novel microstrip bandpass filter using slow-wave open-loop resonators is presented, which concentrates on the stopband rejection performance to suppress the harmonic standing wave rather than the passband performance by using multilayer LCP technology. The multilayer open-loop slow-wave resonator has not only very compact size, but also exhibits an excellent wider upper stopband resulting from the dispersion property. Based on this type of resonator, a five-pole bandpass filter has been proposed, which has good stopband rejection and high selectivity as well as compact size and light weight. The second part is devoted to the design of compact lossy filters with improved performance characteristics. To achieve this, lossy synthesis and extracted-pole technology are combined together to design microstrip filters with flat passband and high selectivity. Two six-pole filters has been analysed from the theoretical circuit model to EM simulations, fabricated to demonstrate the response performance in narrowband and wideband respectively. The third part concentrates on the designs of novel varactor-tuned microstrip lossy bandpass filters. Firstly, state-of-the-art literature review is given to have a general view of reconfigurable bandpass filter with different tuning centre frequency and bandwidth characteristics. Then, three types of tunable microstrip bandpass filters with resistor loading under symmetric tuning method are presented to introduce additional loss into the passband to make it flat over the entire tuning range. The first filter is designed to control the bandwidth and selectivity. The second one is designed to control the bandwidth at fixed centre frequency, while the third filter is extended from the first one to combine resistor loading and cross coupling. Finally, microstrip tunable bandpass lossy filters with extracted-pole technology are proposed. Three six-pole filters of this type have been analysed and fabricated. Due to the asymmetric tuning method, the number of tuning components and dc bias schemes are increased, which is a kind of tradeoff with performance. For all the presented filters, theoretical analyses, implementations and measurements have been given. All of the results achieved in this thesis make the proposed filters attractive for their applications in modern wireless communication systems
    corecore