1,022 research outputs found

    Uv-liga Compatible Electroformed Nano-structured Materials For Micro Mechanical Systems

    Get PDF
    UV-LIGA is a microfabrication process realzed by material deposition through microfabricated molds. UV photolithography is conducted to pattern precise thick micro molds using UV light sensitive materials, mostly SU-8, and electroforming is performed to fabricate micro metallic structures defined by the micro molds. Therefore, UV-LIGA is a bottom-up in situ material-addition process. UV-LIGA has received broad attention recently than LIGA a micro molding fabrication process using X-ray to pattern the micro molds. LIGA is an expansive and is limited in access. In comparing to LIGA, the UV-LIGA is a cost effective process, and is widely accessible and safe. Therefore, it has been extensively used for the fabrication of metallic micro-electro-mechanical-systems (MEMS). The motivation of this research was to study micro mechanical systems fabricated with nano-structured metallic materials via UV-LIGA process. Various micro mechanical systems with high-aspect-ratio and thick metallic structures have been developed and are presented in this desertation. A novel micro mechanical valve has been developed with nano-structured nickel realized with UV-LIGA fabrication technique. Robust compact valves are crucial for space applications where payload and rubstaness are critically concerned. Two types of large flow rate robust passive micro check valve arrays have been designed, fabricated and tested for robust hydraulic actuators. The first such micro valve developed employs nanostructured nickel as the valve flap and single-crystal silicon as the substrates to house inlet and outlet channels. The Nano-structured nickel valve flap was fabricated using the UV-LIGA process developed and the microchannels were fabricated by deep reactive etching (DRIE) method. The valves were designed to operate under a high pressure (\u3e10MPa), able to operate at high frequencies (\u3e10kHz) in cooperating with the PZT actuator to produce large flow rates (\u3e10 cc/s). The fabricated microvalves weigh 0.2 gram, after packing with a novel designated valve stopper. The tested results showed that the micro valve was able to operate at up to 14kHz. This is a great difference in comparison to traditional mechanical valves whose operations are limited to 500 Hz or less. The advantages of micro machined valves attribute to the scaling laws. The second type of micro mechanical valves developed is a in situ assembled solid metallic (nickel) valves. Both the valve substrates for inlet and outlet channels and the valve flap, as well as the valve stopper were made by nickel through a UV-LIGA fabrication process developed. Continuous multiple micro molds fabrication and molding processes were performed. Final micro mechanical valves were received after removing the micro molds used to define the strutures. There is no any additional machining process, such as cutting or packaging. The alignment for laminated fabrication was realized under microscope, therefore it is a highly precise in situ fabrication process. Testing results show the valve has a forward flow rate of19 cc/s under a pressure difference of 90 psi. The backward flow rate of 0.023 cc/s, which is negligible (0.13%). Nano-structured nickel has also been used to develop laminated (sandwiched) micro cryogenic heater exchanger with the UV-LIGA process. Even though nickel is apparently not a good thermal conductor at room temperature, it is a good conductor at cryogentic temerpature since its thermal conductivity increases to 1250 W/k·m at 77K. Micro patterned SU-8 molds and electroformed nickel have been developed to realize the sandwiched heat exchanger. The SU-8 mold (200mm x 200mm x50mm) array was successfully removed after completing the nickel electroforming. The second layer of patterned SU-8 layer (200mm x 200mm x50mm, as a thermal insulating layer) was patterned and aligned on the top of the electroformed nickel structure to form the laminated (sandwiched) micro heat exchanger. The fabricated sandwiched structure can withstand cryogenic temperature (77K) without any damages (cracks or delaminations). A study on nanocomposite for micro mechanical systems using UV-LIGA compatible electroforming process has been performed. Single-walled carbon nanotubes (SWNTs) have been proven excellent mechanical properties and thermal conductive properties, such as high strength and elastic modulus, negative coefficient of thermal expansion (CTE) and a high thermal conductivity. These properties make SWNT an excellent reinforcement in nanocomposite for various applications. However, there has been a challenge of utilizing SWNTs for engineering applications due to difficulties in quality control and handling too small (1-2nm in diameter). A novel copper/SWNT nanocomposite has been developed during this dissertational research. The goal of this research was to develop a heat spreader for high power electronics (HPE). Semiconductors for HPE, such as AlGaN/GaN high electron mobility transistors grown on SiC dies have a typical CTE about 4~6x10-6/k while most metallic heat spreaders such as copper have a CTE of more than 10x10-6/k. The SWNTs were successfully dispersed in the copper matrix to form the SWNT/Cu nano composite. The tested composite density is about 7.54 g/cm3, which indicating the SWNT volumetric fraction of 18%. SEM pictures show copper univformly coated on SWNT (worm-shaped structure). The measured CTE of the nanocomposite is 4.7 x 10-6/°C, perfectly matching that of SiC die (3.8 x 10-6/°C). The thermal conductivity derived by Wiedemann-Franz law after measuring composit\u27s electrical conductivity, is 588 W/m-K, which is 40% better than that of pure copper. These properties are extremely important for the heat spreader/exchanger to remove the heat from HPE devices (SiC dies). Meanwhile, the matched CTE will reduce the resulted stress in the interface to prevent delaminations. Therefore, the naocomposite developed will be an excellent replacement material for the CuMo currently used in high power radar, and other HPE devices under developing. The mechanical performance and reliability of micro mechanical devices are critical for their application. In order to validate the design & simulation results, a direct (tensile) test method was developed to test the mechanical properties of the materials involved in this research, including nickel and SU-8. Micro machined specimens were fabricated and tested on a MTS Tytron Micro Force Tester with specially designed gripers. The tested fracture strength of nanostructured nickel is 900±70 MPa and of 50MPa for SU-8, resepctively which are much higher than published values

    Towards new hermeticity test methods for MEMS

    Get PDF
    Hermeticity is a measure of how well a package can maintain its intended ambient cavity environment over the device lifetime. Since many Micro-Electro-Mechanical Systems (MEMS) sensors, actuators and microelectronic devices require a known cavity environment for optimum operational performance, it is important to know the leak rate of the package for lifetime prediction purposes. In this field, limitations in the traditional leak detection methods and standards used originally for integrated circuits and semiconductors have been blindly and often incorrectly applied to MEMS and microelectronic packages. The aim of this project is to define accurately the limitations of the existing hermeticity test methods and standards when applied to low cavity volume MEMS and microelectronic packages and to demonstrate novel test methods, which are applicable to such packages. For the first time, the use of the Lambert-W function has been demonstrated to provide a closed form expression of the maximum true leak rate achievable for the most commonly used existing hermeticity test method, the helium fine leak test. This expression along with the minimum detectable leak rate expression is shown to provide practical guidelines for the accurate testing of hermeticity for ultra-low volume packages. The three leak types which MEMS and microelectronic packages are subject to: molecular leaks, permeation and outgassing, are explained in detail and it is found that the helium leak test is capable of quantifying only molecular leak in packages with cavity volumes exceeding 2.6 mm3. With many MEMS and microelectronic package containing cavities with lower volumes, new hermeticity test methods are required to fill this gap and to measure the increasingly lower leak rates which adversely affect such packages. Fourier Transform Infra-Red (FTIR) spectroscopy and Raman spectroscopy are investigated as methods of detecting gas pressure within MEMS and microelectronics packages. Measured over time, FTIR can be used to determine the molecular and permeation leak rates of packages containing infra-red transparent cap materials. Future work is required to achieve an adequate signal to noise ratio to enable Raman spectroscopy to be a quantitative method to determine molecular leaks, permeation leaks and potentially outgassing. The design, fabrication and calibration procedure for three in-situ test structures intended to monitor the hermeticity of packages electrically are also presented. The calibration results of a piezoresistive cap deflection test structure show the structure can be used to detect leak ii rates of any type down to 6.94×10-12 atm.cm3.s-1. A portfolio of hermeticity test methods is also presented outlining the limitations and advantages of each method. This portfolio is intended to be a living document and should be updated as new research is undertaken and new test methods developed

    Ultra conformable and multimodal tactile sensors based on organic field-effect transistors

    Get PDF
    Cognitive psychology is the branch of psychology related to all the processes by which sensory input is transformed, processed and used. Academic and industrial research has always invested time and resources to develop devices capable to simulate the behavior of the organs where the perceptions are located. In recent years, in fact, there have been numerous discoveries related to new materials, and new devices, capable of reproducing, in a reliable manner, the sensory behavior of humans. Particular interest in scientific research has been aimed at understanding and reproducing of man's tactile sensations. It is known that, through the receptors of the skin, it is possible to detect sensations such as pain, changes in pressure and/or temperature. The development of tactile sensor technology had a significant increase in the last years of 1970s, thanks to the important surveys of Stojiljkovic, Harmon and Lumelsky who presented the firsts prototype of sensors for artificial skin applications, and summarized the main characteristics and requirements of tactile sensors. Recently, organic electronics has been deeply investigated as technology for the fabrication of tactile sensors using biocompatible materials, which can be deposited and processed on ultra flexible and ultra conformable substrates. In general, the most attractive property of these materials is mainly related to their high mechanical flexibility, which is mandatory for artificial skin applications. The main object of this PhD research activity was the development and optimization of an innovative technology for the realization of physical sensors able to detect pressure and temperature variations, which can be applied in the field of biomedical engineering and biorobotics. By exploiting the particular characteristics of the employed materials, such as mechanical flexibility, the proposed sensors are very suitable to be integrated with flexible structures (for example plastics) as a pressure and temperature sensor, and therefore, ideal for the realization of an artificial skin like. In Chapter 1, the basics of humans somatosensory system will be introduced: after a brief description of tactile thermoreceptors, mechanoreceptors and nociceptors, a definition of electronic skin and its characteristics will be provided. In Chapter 2, a wide analysis of the state of the art will be reported. Several and different examples of tactile sensor (in inorganic and organic technology) will be presented, underlining advantages and disadvantages for each approach. In Chapter 3, the firsts experimental results, obtained in the first part of my PhD program, will be presented. All the steps of the fabrication process of the devices will be described, as well as the measurement setup used for the electrical characterization of the sensors. In Chapter 4, the sensor structure optimization will be presented. It will be demonstrated how the presented devices are able to sense simultaneously thermal and mechanical stimuli. Moreover, it will be demonstrated that, thanks to an alternative and innovative fabrication process, the sensors can be transferred directly on skin, thus proving the suitability of the proposed sensor architecture for tactile applications

    MME2010 21st Micromechanics and Micro systems Europe Workshop : Abstracts

    Get PDF

    Novel processing routes for neural interfaces

    Get PDF
    The thesis describes novel processing routes that have been developed to fabricate neural interfaces. A process has been investigated that uses microfabrication techniques to fabricate a multi-channel regenerative implant that can record nerve impulses in the peripheral nervous system (PNS), called the Spiral Peripheral Nerve Interface (SPNI). It is shown both theoretically and experimentally that the implant improves the ability to record signals in the PNS via micro-channels that act as axonal amplifiers. New processing routes are introduced to create robust interconnections from the SPNI to external electronics via ‘Microflex’ technology. To incorporate the new interconnection technology the SPNI had to be modified. During this modification the strain in the device was given specific consideration, for which a new bending model is presented. Modelling is used to show that electrochemical impedance spectroscopy can be used to assess the quality of the fabrication process. Electrochemical and mechanical tests show that the interconnection technology is suitable for a neural interfaces but the fabrication of perfectly sealed micro-channels was not evident. Thus, the SPNI was further improved by the introduction of a silicone sealing layer in the construction of the micro-channel array that was implemented using a novel adhesive bonding technique

    Carbon nanotubes micro-arrays: characterization and application in biosensing of free proteins and label-free capture of breast cancer cells

    Get PDF
    Circulating tumor cells (CTCs) are cells released into the bloodstream from primary tumors and are suspected to be one of the main causes behind metastatic spreading of cancer. The ability to capture and analyze circulating tumor cells in clinical samples is of great interest in prevailing patient prognosis and clinical management of cancer. Carbon nanotubes, individual rolled-up graphene sheets, have emerged as exciting materials for probing the biomolecular interactions. With diameter of about 1 nm, they can attach themselves to cell surface receptors through specific antibodies and hold a great potential for diagnostic cellular profiling. Carbon nanotubes can be either semiconducting or metallic, and the electronic properties of either type rivals the best known materials. Small size of nanotubes and the ability to functionalize their surface using 1-Pyrenebutanoic Acid, Succinimidyl Ester (PASE), enables a versatile probe for developing a platform for capture and analysis of cancer biomarkers and circulating tumor cells. Although nanotubes have previously been used to electrically detect a variety of molecules and proteins, here for the first time we demonstrate the label free capture of spiked breast cancer cells using ultra-thin carbon nanotube film micro-array devices in a drop of buffy coat and blood. A new statistical approach of using Dynamic Time Warping (DTW) was used to classify the electrical signatures with 90% sensitivity and 90% specificity in blood. These results suggest such label free devices could potentially be useful for clinical capture and further analysis of circulating tumor cells. This thesis will go in-depth the properties of carbon nanotubes, device fabrication and characterization methodologies, functionalization protocols, and experiments in buffy coats and in blood. Combination of nano and biological materials, functionalization protocols and advanced statistical classifiers can potentially enable clinical translation of such devices in the future

    Improved tribology and materials for a new generation of hip prostheses

    Get PDF
    Not availabl

    Laser-assisted processing of multilayer films for inexpensive and flexible biomedical microsystems

    Get PDF
    Flexible/stretchable electronics offer ideal properties for emerging health monitoring devices that can seamlessly integrate with the soft, curvilinear, and dynamic surfaces of the human body. The resulting capabilities have allowed novel devices for monitoring physiological parameters, improving surgical procedures, and human-machine interfaces. While the attractiveness of these devices are indubitable, their fabrication by conventional cleanroom techniques makes them expensive and incompatible with rapid large-scale (e.g., roll-to-roll) production. The purpose of this research is to develop inexpensive fabrication technologies using low-cost commercial films such as polyimide, paper, and metalized paper that can be utilized for developing various flexible/stretchable physical and chemical sensors for wearable and lab-on-chip applications. The demonstrated techniques focus on an array of laser assisted surfaces modification and micromachining strategies with the two commonly used CO2 and Nd: YAG laser systems. The first section of this dissertation demonstrates the use of localized pulsed CO2 laser irradiation to selectively convert thermoset polymer films (e.g., polyimide) into electrically conductive highly porous carbon micro/nanostructures.Thisprocessprovidesauniqueandfacileapproachfordirect writing of carbonized conductive patterns on flexible polyimide sheets in ambient conditions, eliminating complexities of current methods such as expensive CVD processes and complicated formulation/preparation of conductive carbon based inks used in ink jet printing. The highly porous laser carbonized layer can be transferred to stretchable elastomer or further functionalized with various chemical substances such as ionic solutions, nanoparticles, and chemically conductive polymers to create different mechanical and chemical sensors. The second section of this dissertation describes the use of laser ablation for selective removal of material from multilayer films such as ITO-coated PET, parchment paper, and metalized paper to create disposable diagnostic platforms and in-vitro models for lab-on-chip based studies. The ablated areas were analyzed using electrical, mechanical, and surface analysis tools to understand change in physical structure and chemical properties of the laser ablated films. As proof-of-concept demonstrations of these technologies, four different devices are presented here: mechanical, electrochemical, and environmental sensors along with an in-vitro cell culture platform. All four devices are designed, fabricated, and characterized to highlight the capability of commercial laser processing systems in the production of the next generation, low-cost and flexible biomedical devices

    The use of hydrogels to prevent biofouling on underwater sensors

    Get PDF
    The biofouling resistant coatings of hydrogel containing the cationic surfactants benzalkonium chloride and Arquad 2C-75 both extended the fouling free period in marine temperate waters. In the case of BAC the coating stayed clean for 10-12 weeks and the Arquad 2C-75 for 12-14 weeks. Due to the longer life of the hydrogel containing the Arquad 2C-75 instrument trials were carried out using this material. An effective method of attaching the coatings to the optical and membrane ports of sensors was developed and allows the coating to be either held in either a screw down or bolted polymer ring. The diffusion coefficient of cationic surfactants in seawater is reduced compared to diffusion coefficients in freshwater. In seawater the diffusion coefficient of benzalkonium chloride was found to be 2.44 x 10-6 cm2 s-1 compared to 7.78 x 10-6 cm2 s-1 in distilled water at 25°C. Careful choice of gas permeable membrane can result in a slightly longer biofouling lifetime, but only by 1-2 weeks. At 6 weeks all gas permeable membranes had significant fouling which affected their gas permeability. The diffusion rates of ammonia gas, a gas commonly measured in the sea, through PTFE gas sensor membranes varied between PTFE manufacturers with flux measurements ranging from 0.05-1131 µg cm-2 h-1. In addition to the hydrogel testing on instruments within this project a variety of external research groups and environmental agencies are currently testing the hydrogels on their instrumental ports
    • …
    corecore