3,483 research outputs found

    M.I.N.G., Mars Investment for a New Generation: Robotic construction of a permanently manned Mars base

    Get PDF
    A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hangar, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex

    Automatic vehicle identification:a common approach

    Get PDF

    Cell Production System Design: A Literature Review

    Get PDF
    Purpose In a cell production system, a number of machines that differ in function are housed in the same cell. The task of these cells is to complete operations on similar parts that are in the same group. Determining the family of machine parts and cells is one of the major design problems of production cells. Cell production system design methods include clustering, graph theory, artificial intelligence, meta-heuristic, simulation, mathematical programming. This article discusses the operation of methods and research in the field of cell production system design. Methodology: To examine these methods, from 187 articles published in this field by authoritative scientific sources, based on the year of publication and the number of restrictions considered and close to reality, which are searched using the keywords of these restrictions and among them articles Various aspects of production and design problems, such as considering machine costs and cell size and process routing, have been selected simultaneously. Findings: Finally, the distribution diagram of the use of these methods and the limitations considered by their researchers, shows the use and efficiency of each of these methods. By examining them, more efficient and efficient design fields of this type of production system can be identified. Originality/Value: In this article, the literature on cell production system from 1972 to 2021 has been reviewed

    The evolution of cell formation problem methodologies based on recent studies (1997-2008): review and directions for future research

    Get PDF
    This paper presents a literature review of the cell formation (CF) problem concentrating on formulations proposed in the last decade. It refers to a number of solution approaches that have been employed for CF such as mathematical programming, heuristic and metaheuristic methodologies and artificial intelligence strategies. A comparison and evaluation of all methodologies is attempted and some shortcomings are highlighted. Finally, suggestions for future research are proposed useful for CF researchers

    2018 Abstract Booklet

    Get PDF
    Complete Schedule of Events for the 20th Annual Undergraduate Research Symposium at Minnesota State University, Mankato

    Engineering Tools to Further Neuroscientific Investigation

    Get PDF
    Custom equipment is often necessary in the laboratory. However, costs for such equipment can be high and efficient systems with lower cost are an advantage. In this work, we showed that a cellular environment to keep cells healthy and viable for five hours on a microscope could be created using FDM printing (Chapter 3). Design criteria were that it maintained correct temperature, high humidity and proper pH to control the environment as discussed in Chapter 2. Results indicated that cells would maintain viability for up to five hours, but redesigns needed to be made for extending viability past five hours. An imaging enhancement termed PICS (Planar Imaging of Curved Surfaces) was also introduced (Chapter 5). For this project, design criteria were that the device stabilized the tissue for imaging while allowing fluid flow around the tissue and facilitate rotation of the naturally curved tissue with respect to the microscope objective lens. Three further considerations of the PICS device were: (1) that it should not add undue shear stresses to the sample tissue, (2) that there should be no unintentional translation, (3) that it should attach to a standard microscope temperature controller in such a way that it does not interfere with temperature controls and does not move unintentionally. Results indicate successful movement of tissue with respect to imaging plane to facilitate productive image capture. Finally, in Chapter 7, a microelectrochemical array was used to explore differences between glioma and normal astrocyte glutamate levels. Results showed that glioma and normal astrocyte glutamate uptake can be tracked in real-time and compared using the probe. The distinction between glioma cells and astrocytes relies on three indicators: (1) a signal more stepped like in appearance, closer to that of a calibration curve, coming to a steady baseline faster and having a shorter FDHM, is a first indication of impaired uptake; (2) a signal showing a lower k constant, indicating a slower overall clearance rate, (3) faster rise times corresponding with a slower maximum elimination rate. These corresponding factors together indicate impaired uptake in glioma cells versus normal astrocyte glutamate uptake

    In Vitro Assessment of Chronic Nanoparticle Effects on Respiratory Cells

    Get PDF
    Nanoparticles (NPs) are included in a variety of consumer products including cosmetics, food, and food packaging. They are also used in medical products for dermal and oral application and for inhalation. The thinness of the air–blood barrier, the large absorption area of the lung, and the relatively low inactivation by enzymes provide fast entry to the systemic blood circulation at high drug concentrations. In addition to intended uptake, exposure to airborne particles from the environment and to NPs released during the manufacturing process may occur. Cytotoxicity is routinely studied for 4–48 h of exposure, but NPs may accumulate in cells and can cause cellular effects after longer times. Both extent and consequences of cellular NP accumulation are currently largely unknown

    9th Annual Focus on Creative Inquiry Poster Forum Program

    Get PDF
    The 2014 Focus on Creative Inquiry Poster Forum displays a selection of the projects accomplished by Clemson University students in their Creative Inquiry teams. What is Creative Inquiry? It is small-group learning for all students, in all disciplines. It is the imaginative combination of engaged learning and undergraduate research – and it is unique to Clemson University. In Creative inquiry, small teams of undergraduate students work with faculty mentors to take on problems that spring from their own curiosity, a professor’s challenge, or the pressing needs of the world around them. Students take ownership of their projects. They ask questions, they take risks, and they get answers

    Assessment of the environmental aspects of the DOE phosphoric acid fuel cell program

    Get PDF
    The likely facets of a nationwide phosphoric acid fuel cell (PAFC) power plant commercial system are described. The beneficial and adverse environmental impacts produced by the system are assessed. Eleven specific system activities are characterized and evaluated. Also included is a review of fuel cell technology and a description of DOE's National Fuel Cell Program. Based on current and reasonably foreseeable PAFC characteristics, no environmental or energy impact factor was identified that would significantly inhibit the commercialization of PAFC power plant technology
    corecore