5 research outputs found

    Wide Bandwidth - High Accuracy Control Loops in the presence of Slow Varying Signals and Applications in Active Matrix Organic Light Emitting Displays and Sensor Arrays

    Get PDF
    This dissertation deals with the problems of modern active matrix organic light-emitting diode AMOLED display back-plane drivers and sensor arrays. The research described here, aims to classify recently utilized compensation techniques into distinct groups and further pinpoint their advantages and shortcomings. Additionally, a way of describing the loops as mathematical constructs is utilized to derive new circuits from the analog design perspective. A novel principle on display driving is derived by observing those mathematical control loop models and it is analyzed and evaluated as a novel way of pixel driving. Specifically, a new feedback current programming architecture and method is described and validated through experiments, which is compatible with AMOLED displays having the two transistor one capacitor (2T1C) pixel structure. The new pixel programming approach is compatible with all TFT technologies and can compensate for non-uniformities in both threshold voltage and carrier mobility of the pixel OLED drive TFT. Data gathered show that a pixel drive current of 20 nA can be programmed in less than 10usec. This new approach can be implemented within an AMOLED external or integrated display data driver. The method to achieve robustness in the operation of the loop is also presented here, observed through a series of measurements. All the peripheral blocks implementing the design are presented and analyzed through simulations and verified experimentally. Sources of noise are identified and eliminated, while new techniques for better isolation from digital noise are described and tested on a newly fabricated driver. Multiple versions of the new proposed circuit are outlined, simulated, fabricated and measured to evaluate their performance.A novel active matrix array approach suitable for a compact multi-channel gas sensor platform is also described. The proposed active matrix sensor array utilizes an array of P-i-N diodes each connected in series with an Inter-Digitated Electrode (IDE). The functionality of 8x8 and 16x16 sensor arrays measured through external current feedback loops is also presented for the 8x8 arrays and the detection of ammonia (NH3) and chlorine (Cl2) vapor sources is demonstrated

    Wide Bandgap Based Devices: Design, Fabrication and Applications, Volume II

    Get PDF
    Wide bandgap (WBG) semiconductors are becoming a key enabling technology for several strategic fields, including power electronics, illumination, and sensors. This reprint collects the 23 papers covering the full spectrum of the above applications and providing contributions from the on-going research at different levels, from materials to devices and from circuits to systems

    Wearable, low-power CMOS ISFETs and compensation circuits for on-body sweat analysis

    Get PDF
    Complementary metal-oxide-semiconductor (CMOS) technology has been a key driver behind the trend of reduced power consumption and increased integration of electronics in consumer devices and sensors. In the late 1990s, the integration of ion-sensitive field-effect transistors (ISFETs) into unmodified CMOS helped to create advancements in lab-on-chip technology through highly parallelised and low-cost designs. Using CMOS techniques to reduce power and size in chemical sensing applications has already aided the realisation of portable, battery-powered analysis platforms, however the possibility of integrating these sensors into wearable devices has until recently remained unexplored. This thesis investigates the use of CMOS ISFETs as wearable electrochemical sensors, specifically for on-body sweat analysis. The investigation begins by evaluating the ISFET sensor for wearable applications, identifying the key advantages and challenges that arise in this pursuit. A key requirement for wearable devices is a low power consumption, to enable a suitable operational life and small form factor. From this perspective, ISFETs are investigated for low power operation, to determine the limitations when trying to push down the consumption of individual sensors. Batteryless ISFET operation is explored through the design and implementation of a 0.35 \si{\micro\metre} CMOS ISFET sensing array, operating in weak-inversion and consuming 6 \si{\micro\watt}. Using this application-specific integrated circuit (ASIC), the first ISFET array powered by body heat is demonstrated and the feasibility of using near-field communication (NFC) for wireless powering and data transfer is shown. The thesis also presents circuits and systems for combatting three key non-ideal effects experienced by CMOS ISFETs, namely temperature variation, threshold voltage offset and drift. An improvement in temperature sensitivity by a factor of three compared to an uncompensated design is shown through measured results, while adding less than 70 \si{\nano\watt} to the design. A method of automatically biasing the sensors is presented and an approach to using spatial separation of sensors in arrays in applications with flowing fluids is proposed for distinguishing between signal and sensor drift. A wearable device using the ISFET-based system is designed and tested with both artificial and natural sweat, identifying the remaining challenges that exist with both the sensors themselves and accompanying components such as microfluidics and reference electrode. A new ASIC is designed based on the discoveries of this work and aimed at detecting multiple analytes on a single chip. %Removed In the latter half of the thesis, Finally, the future directions of wearable electrochemical sensors is discussed with a look towards embedded machine learning to aid the interpretation of complex fluid with time-domain sensor arrays. The contributions of this thesis aim to form a foundation for the use of ISFETs in wearable devices to enable non-invasive physiological monitoring.Open Acces
    corecore