14,355 research outputs found

    Magnetic noise reduction of in-wheel permanent magnet synchronous motors for light-duty electric vehicles

    Get PDF
    This paper presents study of a multi-slice subdomain model (MS-SDM) for persistent low-frequency sound, in a wheel hub-mounted permanent magnet synchronous motor (WHM-PMSM) with a fractional-slot non-overlapping concentrated winding for a light-duty, fully electric vehicle applications. While this type of winding provides numerous potential benefits, it has also the largest magnetomotive force (MMF) distortion factor, which leads to the electro-vibro-acoustics production, unless additional machine design considerations are carried out. To minimize the magnetic noise level radiated by the PMSM, a skewing technique is targeted with consideration of the natural frequencies under a variable-speed-range analysis. To ensure the impact of the minimization technique used, magnetic force harmonics, along with acoustic sonograms, is computed by MS-SDM and verified by 3D finite element analysis. On the basis of the studied models, we derived and experimentally verified the optimized model with 5 dBA reduction in A-weighted sound power level by due to the choice of skew angle. In addition, we investigated whether or not the skewing slice number can be of importance on the vibro-acoustic objectives in the studied WHM-PMSM.Postprint (published version

    Convection Heat Transfer and Flow Calculations Suitable for Electric Machines Thermal Models

    Get PDF
    This paper deals with the formulations used to predict convection cooling and flow in electric machines. Empirical dimensionless analysis formulations are used to calculate convection heat transfer. The particular formulation used is selected to match the geometry of the surface under consideration and the cooling type used. Flow network analysis, which is used to study the ventilation inside the machine, is also presented. In order to focus the discussion using examples, a commercial software package dedicated to motor cooling optimization (Motor-CAD) is considered. This paper provides guidelines for choosing suitable thermal and flow network formulations and setting any calibration parameters used. It may also be considered a reference paper that brings together useful heat transfer and flow formulations that can be successfully applied to thermal analysis of electrical machine

    Integrated Optimal Design of a Passive Wind Turbine System: An Experimental Validation

    Get PDF
    This work presents design and experimentation of a full passive wind turbine system without active electronic part(power and control). The efficiency of such device can be obtained only if the system design parameters are mutually adapted through an Integrated Optimal Design (IOD) method. This approach based on multiobjective optimization, aims at concurrently optimizing the wind power extraction and the global system losses for a given wind speed profile while reducing the weight of the wind turbine generator. It allows us to obtain the main characteristics (geometric and energetic features) of the optimal Permanent Magnet Synchronous Generator (PMSG) for the passive wind turbine. Finally, experiments on the PMSG prototype built from this work show a good agreement with theoretical predictions. This validates the design approach and confirms the effectiveness of such passive device

    Impact of cross-saturation in sensorless control of transverse-laminated synchronous reluctance motors

    Get PDF
    Synchronous reluctance (SyR) motors are well suited to a zero-speed sensorless control, because of their inherently salient behavior. However, the cross-saturation effect can lead to large errors on the position estimate, which is based on the differential anisotropy. These errors are quantified in the paper, as a function of the working point. The so-calculated errors are then found in good accordance with the purposely obtained experimental measurements. The impact of the amplitude of the carrier voltage is then pointed out, leading to a mixed (carrier injection plus electromotive force estimation) control scheme. Last, a scheme of this type is used, with a commercial transverse-laminated SyR motor. The robustness against cross-saturation is shown, in practice, and the obtained drive performance is pointed out proving to be effective for a general-purpose applicatio

    Solving the More Difficult Aspects of Electric Motor Thermal Analysis in Small and Medium Size Industrial Induction Motors

    Get PDF
    With the ever-increasing pressure on electric motor manufacturers to develop smaller and more efficient electric motors, there is a need for more thermal analysis in parallel with the traditional electromagnetic design. Attention to the thermal design can be rewarded by major improvements in the overall performance. Technical papers published to date highlight a number of thermal design issues that are difficult to analyze. This paper reviews some of these issues and gives advice on how to deal with them when developing algorithms for inclusion in design software

    An Efficiency-Focused Design of Direct-DC Loads in Buildings

    Get PDF
    Despite the recent interest in direct current (DC) power distribution in buildings, the market for DC-ready loads remains small. The existing DC loads in various products or research test beds are not always designed to efficiently leverage the benefits of DC. This work addresses a pressing need for a study into the development of efficient DC loads. In particular, it focuses on documenting and demonstrating how to best leverage a DC input to eliminate or improve conversion stages in a load’s power converter. This work identifies how typical building loads can benefit from DC input, including bath fans, refrigerators, task lights, and zone lighting. It then details the development of several prototypes that demonstrate efficiency savings with DC. The most efficient direct-DC loads are explicitly designed for DC from the ground up, rather than from an AC modification

    Model simplification and optimization of a passive wind turbine generator

    Get PDF
    In this paper, the design of a "low cost full passive structure" of wind turbine system without active electronic part (power and control) is investigated. The efficiency of such device can be obtained only if the design parameters are mutually adapted through an optimization design approach. For this purpose, sizing and simulating models are developed to characterize the behavior and the efficiency of the wind turbine system. A model simplification approach is presented, allowing the reduction of computational times and the investigation of multiple Pareto-optimal solutions with a multiobjective genetic algorithm. Results show that the optimized wind turbine configurations are capable of matching very closely the behavior of active wind turbine systems which operate at optimal wind powers by using a MPPT control device

    Multiple-fault detection methodology based on vibration and current analysis applied to bearings in induction motors and gearboxes on the kinematic chain

    Get PDF
    © 2016 Juan Jose Saucedo-Dorantes et al. Gearboxes and induction motors are important components in industrial applications and their monitoring condition is critical in the industrial sector so as to reduce costs and maintenance downtimes. There are several techniques associated with the fault diagnosis in rotating machinery; however, vibration and stator currents analysis are commonly used due to their proven reliability. Indeed, vibration and current analysis provide fault condition information by means of the fault-related spectral component identification. This work presents a methodology based on vibration and current analysis for the diagnosis of wear in a gearbox and the detection of bearing defect in an induction motor both linked to the same kinematic chain; besides, the location of the fault-related components for analysis is supported by the corresponding theoretical models. The theoretical models are based on calculation of characteristic gearbox and bearings fault frequencies, in order to locate the spectral components of the faults. In this work, the influence of vibrations over the system is observed by performing motor current signal analysis to detect the presence of faults. The obtained results show the feasibility of detecting multiple faults in a kinematic chain, making the proposed methodology suitable to be used in the application of industrial machinery diagnosis.Postprint (published version
    corecore