1,293 research outputs found

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Study and application of spectral monitoring techniques for optical network optimization

    Get PDF
    One of the possible ways to address the constantly increasing amount of heterogeneous and variable internet traffic is the evolution of the current optical networks towards a more flexible, open, and disaggregated paradigm. In such scenarios, the role played by Optical Performance Monitoring (OPM) is fundamental. In fact, OPM allows to balance performance and specification mismatches resulting from the disaggregation adoption and provides the control plane with the necessary feedback to grant the optical networks an adequate automation level. Therefore, new flexible and cost-effective OPM solutions are needed, as well as novel techniques to extract the desired information from the monitored data and process and apply them. In this dissertation, we focus on three aspects related to OPM. We first study a monitoring data plane scheme to acquire the high resolution signal optical spectra in a nonintrusive way. In particular, we propose a coherent detection based Optical Spectrum Analyzer (OSA) enhanced with specific Digital Signal Processing (DSP) to detect spectral slices of the considered optical signals. Then, we identify two main placement strategies for such monitoring solutions, enhancing them using two spectral processing techniques to estimate signal- and optical filter-related parameters. Specifically, we propose a way to estimate the Amplified Spontaneous Emission (ASE) noise or its related Optical Signal-to-Noise (OSNR) using optical spectra acquired at the egress ports of the network nodes and the filter central frequency and 3/6 dB bandwidth, using spectra captured at the ingress ports of the network nodes. To do so, we leverage Machine Learning (ML) algorithms and the function fitting principle, according to the considered scenario. We validate both the monitoring strategies and their related processing techniques through simulations and experiments. The obtained results confirm the validity of the two proposed estimation approaches. In particular, we are able to estimate in-band the OSNR/ASE noise within an egress monitor placement scenario, with a Maximum Absolute Error (MAE) lower than 0.4 dB. Moreover, we are able to estimate the filter central frequency and 3/6 dB bandwidth, within an ingress optical monitor placement scenario, with a MAE lower than 0.5 GHz and 0.98 GHz, respectively. Based on such evaluations, we also compare the two placement scenarios and provide guidelines on their implementation. According to the analysis of specific figures of merit, such as the estimation of the Signal-to-Noise Ratio (SNR) penalty introduced by an optical filter, we identify the ingress monitoring strategy as the most promising. In fact, when compared to scenarios where no monitoring strategy is adopted, the ingress one reduced the SNR penalty estimation by 92%. Finally, we identify a potential application for the monitored information. Specifically, we propose a solution for the optimization of the subchannel spectral spacing in a superchannel. Leveraging convex optimization methods, we implement a closed control loop process for the dynamical reconfiguration of the subchannel central frequencies to optimize specific Quality of Transmission (QoT)-related metrics. Such a solution is based on the information monitored at the superchannel receiver side. In particular, to make all the subchannels feasible, we consider the maximization of the total superchannel capacity and the maximization of the minimum superchannel subchannel SNR value. We validate the proposed approach using simulations, assuming scenarios with different subchannel numbers, signal characteristics, and starting frequency values. The obtained results confirm the effectiveness of our solution. Specifically, compared with the equally spaced subchannel scenario, we are able to improve the total and the minimum subchannel SNR values of a four subchannel superchannel, of 1.45 dB and 1.19 dB, respectively.Una de las posibles formas de hacer frente a la creciente cantidad de tráfico heterogéneo y variable de Internet es la evolución de las actuales redes ópticas hacia un paradigma más flexible, abierto y desagregado. En estos escenarios, el papel que desempeña el modulo óptico de monitorización de prestaciones (OPM) es fundamental. De hecho, el OPM permite equilibrar los desajustes de rendimiento y especificación, los cuales surgen con la adopción de la desagregación; del mismo modo el OPM también proporciona al plano de control la realimentación necesaria para otorgar un nivel de automatización adecuado a las redes ópticas. En esta tesis, nos centramos en tres aspectos relacionados con el OPM. En primer lugar, estudiamos un esquema de monitorización para adquirir, de forma no intrusiva, los espectros ópticos de señales de alta resolución. En concreto, proponemos un analizador de espectro óptico (OSA) basado en detección coherente y mejorado con un específico procesado digital de señal (DSP) para detectar cortes espectrales de las señales ópticas consideradas. A continuación, presentamos dos técnicas de colocación para dichas soluciones de monitorización, mejorándolas mediante dos técnicas de procesamiento espectral para estimar los parámetros relacionados con la señal y el filtro óptico. Específicamente, proponemos un método para estimar el ruido de emisión espontánea amplificada (ASE), o la relación de señal-ruido óptica (OSNR), utilizando espectros ópticos adquiridos en los puertos de salida de los nodos de la red. Del mismo modo, estimamos la frecuencia central del filtro y el ancho de banda de 3/6 dB, utilizando espectros capturados en los puertos de entrada de los nodos de la red. Para ello, aprovechamos los algoritmos de Machine Learning (ML) y el principio de function fitting, según el escenario considerado. Validamos tanto las estrategias de monitorización como las técnicas de procesamiento mediante simulaciones y experimentos. Se puede estimar en banda el ruido ASE/OSNR en un escenario de colocación de monitores de salida, con un Maximum Absolute Error (MAE) inferior a 0.4 dB. Además, se puede estimar la frecuencia central del filtro y el ancho de banda de 3/6 dB, dentro de un escenario de colocación de monitores ópticos de entrada, con un MAE inferior a 0.5 GHz y 0.98 GHz, respectivamente. A partir de estas evaluaciones, también comparamos los dos escenarios de colocación y proporcionamos directrices sobre su aplicación. Según el análisis de específicas figuras de mérito, como la estimación de la penalización de la relación señal-ruido (SNR) introducida por un filtro óptico, demostramos que la estrategia de monitorización de entrada es la más prometedora. De hecho, utilizar un sistema de monitorización de entrada redujo la estimación de la penalización del SNR en un 92%. Por último, identificamos una posible aplicación para la información monitorizada. En concreto, proponemos una solución para la optimización del espaciado espectral de los subcanales en un supercanal. Aprovechando los métodos de optimización convexa, implementamos un proceso cíclico de control cerrado para la reconfiguración dinámica de las frecuencias centrales de los subcanales con el fin de optimizar métricas específicas relacionadas con la calidad de la transmisión (QoT). Esta solución se basa en la información monitorizada en el lado del receptor del supercanal. Validamos el enfoque propuesto mediante simulaciones, asumiendo escenarios con un diferente número de subcanales, distintas características de la señal, y diversos valores de la frecuencia inicial. Los resultados obtenidos confirman la eficacia de nuestra solución. Más específicatamente, en comparación con el escenario de subcanales igualmente espaciados, se pueden mejorar los valores totales y minimos de SNR de los subcanales de un supercanal de cuatro subcanales, de 1.45 dB y 1.19 dB, respectivamentePostprint (published version

    Pedestrian and Vehicle Detection in Autonomous Vehicle Perception Systems—A Review

    Get PDF
    Autonomous Vehicles (AVs) have the potential to solve many traffic problems, such as accidents, congestion and pollution. However, there are still challenges to overcome, for instance, AVs need to accurately perceive their environment to safely navigate in busy urban scenarios. The aim of this paper is to review recent articles on computer vision techniques that can be used to build an AV perception system. AV perception systems need to accurately detect non-static objects and predict their behaviour, as well as to detect static objects and recognise the information they are providing. This paper, in particular, focuses on the computer vision techniques used to detect pedestrians and vehicles. There have been many papers and reviews on pedestrians and vehicles detection so far. However, most of the past papers only reviewed pedestrian or vehicle detection separately. This review aims to present an overview of the AV systems in general, and then review and investigate several detection computer vision techniques for pedestrians and vehicles. The review concludes that both traditional and Deep Learning (DL) techniques have been used for pedestrian and vehicle detection; however, DL techniques have shown the best results. Although good detection results have been achieved for pedestrians and vehicles, the current algorithms still struggle to detect small, occluded, and truncated objects. In addition, there is limited research on how to improve detection performance in difficult light and weather conditions. Most of the algorithms have been tested on well-recognised datasets such as Caltech and KITTI; however, these datasets have their own limitations. Therefore, this paper recommends that future works should be implemented on more new challenging datasets, such as PIE and BDD100K.EPSRC DTP PhD studentshi

    Boosting the hardware-efficiency of cascade support vector machines for embedded classification applications

    Get PDF
    Support Vector Machines (SVMs) are considered as a state-of-the-art classification algorithm capable of high accuracy rates for a different range of applications. When arranged in a cascade structure, SVMs can efficiently handle problems where the majority of data belongs to one of the two classes, such as image object classification, and hence can provide speedups over monolithic (single) SVM classifiers. However, the SVM classification process is still computationally demanding due to the number of support vectors. Consequently, in this paper we propose a hardware architecture optimized for cascaded SVM processing to boost performance and hardware efficiency, along with a hardware reduction method in order to reduce the overheads from the implementation of additional stages in the cascade, leading to significant resource and power savings. The architecture was evaluated for the application of object detection on 800×600 resolution images on a Spartan 6 Industrial Video Processing FPGA platform achieving over 30 frames-per-second. Moreover, by utilizing the proposed hardware reduction method we were able to reduce the utilization of FPGA custom-logic resources by ∼30%, and simultaneously observed ∼20% peak power reduction compared to a baseline implementation
    corecore