1,431 research outputs found

    Adaptive neurofuzzy ANFIS modeling of laser surface treatments

    Get PDF
    This paper introduces a new ANFIS adaptive neurofuzzy inference model for laser surface heat treatments based on the Green’s function. Due to its high versatility, efficiency and low simulation time, this model is suitable not only for the analysis and design of control systems, but also for the development of an expert real time supervision system that would allow detecting and preventing any failure during the treatment

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    Design an intelligent controller for full vehicle nonlinear active suspension systems

    Get PDF
    The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibrations on each corner of vehicle by supplying control forces to suspension system when travelling on rough road. The other purpose for using the NF controller for vehicle model is to reduce the body inclinations that are made during intensive manoeuvres including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparing with an optimal Fractional Order (FOPID) controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function

    Model-reference adaptive control based on neurofuzzy networks

    Get PDF
    Model reference adaptive control (MRAC) is a popular approach to control linear systems, as it is relatively simple to implement. However, the performance of the linear MRAC deteriorates rapidly when the system becomes nonlinear. In this paper, a nonlinear MRAC based on neurofuzzy networks is derived. Neurofuzzy networks are chosen not only because they can approximate nonlinear functions with arbitrary accuracy, but also they are compact in their supports, and the weights of the network can be readily updated on-line. The implementation of the neurofuzzy network-based MRAC is discussed, and the local stability of the system controlled by the proposed controller is established. The performance of the neurofuzzy network-based MRAC is illustrated by examples involving both linear and nonlinear systems. © 2004 IEEE.published_or_final_versio

    Fully Evolvable Optimal Neurofuzzy Controller Using Adaptive Critic Designs

    Get PDF
    A near-optimal neurofuzzy external controller is designed in this paper for a static compensator (STATCOM) in a multimachine power system. The controller provides an auxiliary reference signal for the STATCOM in such a way that it improves the damping of the rotor speed deviations of its neighboring generators. A zero-order Takagi-Sugeno fuzzy rule base constitutes the core of the controller. A heuristic dynamic programming (HDP) based approach is used to further train the controller and enable it to provide nonlinear near-optimal control at different operating conditions of the power system. Based on the connectionist systems theory, the parameters of the neurofuzzy controller, including the membership functions, undergo training. Simulation results are provided that compare the performance of the neurofuzzy controller with and without updating the fuzzy set parameters. Simulation results indicate that updating the membership functions can noticeably improve the performance of the controller and reduce the size of the STATCOM, which leads to lower capital investment

    Modeling of Magnetorheological Dampers under Various Impact Loads

    Get PDF

    Neurofuzzy control to address stochastic variation in actuated-coordinated systems at closely-spaced intersections

    Get PDF
    This dissertation documents a method of addressing stochastic variation at closely-spaced signalized intersections using neurofuzzy control. Developed on the conventional actuated-coordinated control system, the neurofuzzy traffic signal control keeps the advantage of the conventional control system. Beyond this, the neurofuzzy signal control coordinates the coordinated phase with one of the non-coordinated phases with no reduction of the green band assigned to the coordination along the arterial, reduces variations of traffic signal times in the cycle caused by early return to green , hence, makes more sufficient utilization of green time at closely-spaced intersections. The neurofuzzy signal control system manages a non-coordinated movement in order to manage queue spillbacks and variations of signal timings.Specifically, the neurofuzzy controller establishes a secondary coordination between the upstream coordinated phase (through phase) and the downstream non-coordinated phase (left turn phase) based on real-time traffic demand. Under the fuzzy logic signal control, the traffic from the upstream intersection can arrive and join the queue at the downstream left turn lane and be served, and hence, less possibly be blocked on the downstream left turn lane. This secondary coordination favors left turn progression and, hence, reduces the queue spillbacks. The fuzzy logic method overcomes the natural disadvantage of currently widely used actuated-coordinated traffic signal control in that the fuzzy logic method could coordinate a coordinated movement with a non-coordinated movement. The experiment was conducted and evaluated using a simulation model created using the microscopic simulation program - VISSIM.The neurofuzzy control algorithm was coded with MATLAB which interacts with the traffic simulation model via VISSIM\u27s COM interface. The membership functions in the neurofuzzy signal control system were calibrated using reinforcement learning to further the performance. Comparisons were made between the trained neurofuzzy control, the untrained neurofuzzy control, and the conventional actuated-coordinated control under five different traffic volumes. The simulation results indicated that the trained neurofuzzy signal control outperformed the other two for each traffic case. Comparing to the conventional actuated-coordinated control, the trained neurofuzzy signal control reduced the average delay by 7% and the average number of stops by 6% under the original traffic volume; as traffic volume increasing to 120%, the reductions doubled
    • 

    corecore