110 research outputs found

    Goal-seeking Behavior-based Mobile Robot Using Particle Swarm Fuzzy Controller

    Get PDF
    Behavior-based control architecture has successfully demonstrated their competence in mobile robot development. Fuzzy logic system characteristics are suitable to address the behavior design problems. However, there are difficulties encountered when setting fuzzy parameters manually. Therefore, most of the works in the field generate certain interest for the study of fuzzy systems with added learning capabilities. This paper presents the development of fuzzy behavior-based control architecture using Particle Swarm Optimization (PSO). A goal-seeking behaviors based on Particle Swarm Fuzzy Controller (PSFC) are developed using the modified PSO with two stages of the PSFC process. Several simulations and experiments with MagellanPro mobile robot have been performed to analyze the performance of the algorithm.  The promising results have proved that the proposed control architecture for mobile robot has better capability to accomplish useful task in real office-like environment

    Procedural Content Generation for Real-Time Strategy Games

    Get PDF
    Videogames are one of the most important and profitable sectors in the industry of entertainment. Nowadays, the creation of a videogame is often a large-scale endeavor and bears many similarities with, e.g., movie production. On the central tasks in the development of a videogame is content generation, namely the definition of maps, terrains, non-player characters (NPCs) and other graphical, musical and AI-related components of the game. Such generation is costly due to its complexity, the great amount of work required and the need of specialized manpower. Hence the relevance of optimizing the process and alleviating costs. In this sense, procedural content generation (PCG) comes in handy as a means of reducing costs by using algorithmic techniques to automatically generate some game contents. PCG also provides advantages in terms of player experience since the contents generated are typically not fixed but can vary in different playing sessions, and can even adapt to the player herself. For this purpose, the underlying algorithmic technique used for PCG must be also flexible and adaptable. This is the case of computational intelligence in general and evolutionary algorithms in particular. In this work we shall provide an overview of the use of evolutionary intelligence for PCG, with special emphasis on its use within the context of real-time strategy games. We shall show how these techniques can address both playability and aesthetics, as well as improving the game AI

    Behavior-based Fuzzy Control For A Mobile Robot With Non-holonomic Constraints

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2005Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2005Bu çalışmada robotik alanında yeni yaklaşımlar olan davranış temelli robotik ve bulanık mantık konuları gerçek zamanda mobil robot uygulamaları bakımından incelenmiş, dört ilerlemeli, dört yönelmeli bir mobil robot için Engelden Sakın , Hedefe Git , Duvarı İzle , Yola Teğet İlerle , Avare Gez davranışları oluşturulmuştur. Bu davranışların içinden Engelden Sakın , Hedefe Git ve Duvarı İzle davranışları için sonar sensör matematik modelleri oluşturulmuş ve bu davranışların yapısında bulanık mantık yaklaşımı kullanılmıştır. Mobil robot, kinetik ve dinamik olarak holonomik olmayan kısıtları kullanılarak modellenmiştir ve simülasyon sırasında mobil robotun pozisyonu, tekerlek ve robot yönelimleri, tekerlek ve robot hızları, tekerlek torkları gibi parametreler izlenebilmektedir. Davranışlar da, simülasyon ortamında kazanımları, bulanık mantık işleme yapıları, gerçek zaman uygulanabilirliği ve davranışların koordine edilmeleri bakımından incelenmiştir. Bu çalışma gerçek bir robotta yapılacak deneyler için temel teşkil etmektedir.In this study, the new approaches to the robotics subject, behavior-based robotics and fuzzy logic control are investigated for the real-time applications of mobile robots, Avoid Obstacle , Move to Goal , Wall Following , Head-on , Wander behaviors are built up for a four-wheel driven and four-wheel steered mobile robot. Sonar sensor mathematical models are formed for Avoid Obstacle , Move to Goal and Wall Following behaviors and fuzzy logic concepts are used in the structure of these behaviors. The mobile robot is modelled kinematically and dynamically considering the non-holonomic constraints. The posture and speed of the robot and the configurations, speeds and torques of the wheels can be obtained from the simulation. The behaviors are investigated regarding their gains, fuzzy inference structures, real-time applicabilities and thein coordination. This study constitutes basis for the experiments on a real mobile robot.Yüksek LisansM.Sc

    Virtual player design using self-learning via competitive coevolutionary algorithms

    Get PDF
    The Google Artificial Intelligence (AI) Challenge is an international contest the objective of which is to program the AI in a two-player real time strategy (RTS) game. This AI is an autonomous computer program that governs the actions that one of the two players executes during the game according to the state of play. The entries are evaluated via a competition mechanism consisting of two-player rounds where each entry is tested against others. This paper describes the use of competitive coevolutionary (CC) algorithms for the automatic generation of winning game strategies in Planet Wars, the RTS game associated with the 2010 contest. Three different versions of a prime algorithm have been tested. Their common nexus is not only the use of a Hall-of-Fame (HoF) to keep note of the winners of past coevolutions but also the employment of an archive of experienced players, termed the hall-of-celebrities (HoC), that puts pressure on the optimization process and guides the search to increase the strength of the solutions; their differences come from the periodical updating of the HoF on the basis of quality and diversity metrics. The goal is to optimize the AI by means of a self-learning process guided by coevolutionary search and competitive evaluation. An empirical study on the performance of a number of variants of the proposed algorithms is described and a statistical analysis of the results is conducted. In addition to the attainment of competitive bots we also conclude that the incorporation of the HoC inside the primary algorithm helps to reduce the effects of cycling caused by the use of HoF in CC algorithms.This work is partially supported by Spanish MICINN under Project ANYSELF (TIN2011-28627-C04-01),3 by Junta de Andalucía under Project P10-TIC-6083 (DNEMESIS) and by Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech

    Coevolutionary fuzzy modeling

    Get PDF
    This thesis presents Fuzzy CoCo, a novel approach for system design, conducive to explaining human decisions. Based on fuzzy logic and coevolutionary computation, Fuzzy CoCo is a methodology for constructing systems able to accurately predict the outcome of a human decision-making process, while providing an understandable explanation of the underlying reasoning. Fuzzy logic provides a formal framework for constructing systems exhibiting both good numeric performance (precision) and linguistic representation (interpretability). From a numeric point of view, fuzzy systems exhibit nonlinear behavior and can handle imprecise and incomplete information. Linguistically, they represent knowledge in the form of rules, a natural way for explaining decision processes. Fuzzy modeling —meaning the construction of fuzzy systems— is an arduous task, demanding the identification of many parameters. This thesis analyses the fuzzy-modeling problem and different approaches to coping with it, focusing on evolutionary fuzzy modeling —the design of fuzzy inference systems using evolutionary algorithms— which constitutes the methodological base of my approach. In order to promote this analysis the parameters of a fuzzy system are classified into four categories: logic, structural, connective, and operational. The central contribution of this work is the use of an advanced evolutionary technique —cooperative coevolution— for dealing with the simultaneous design of connective and operational parameters. Cooperative coevolutionary fuzzy modeling succeeds in overcoming several limitations exhibited by other standard evolutionary approaches: stagnation, convergence to local optima, and computational costliness. Designing interpretable systems is a prime goal of my approach, which I study thoroughly herein. Based on a set of semantic and syntactic criteria, regarding the definition of linguistic concepts and their causal connections, I propose a number of strategies for producing more interpretable fuzzy systems. These strategies are implemented in Fuzzy CoCo, resulting in a modeling methodology providing high numeric precision, while incurring as little a loss of interpretability as possible. After testing Fuzzy CoCo on a benchmark problem —Fisher's Iris data— I successfully apply the algorithm to model the decision processes involved in two breast-cancer diagnostic problems: the WBCD problem and the Catalonia mammography interpretation problem. For the WBCD problem, Fuzzy CoCo produces systems both of high performance and high interpretability, comparable (if not better) than the best systems demonstrated to date. For the Catalonia problem, an evolved high-performance system was embedded within a web-based tool —called COBRA— for aiding radiologists in mammography interpretation. Several aspects of Fuzzy CoCo are thoroughly analyzed to provide a deeper understanding of the method. These analyses show the consistency of the results. They also help derive a stepwise guide to applying Fuzzy CoCo, and a set of qualitative relationships between some of its parameters that facilitate setting up the algorithm. Finally, this work proposes and explores preliminarily two extensions to the method: Island Fuzzy CoCo and Incremental Fuzzy CoCo, which together with the original CoCo constitute a family of coevolutionary fuzzy modeling techniques. The aim of these extensions is to guide the choice of an adequate number of rules for a given problem. While Island Fuzzy CoCo performs an extended search over different problem sizes, Incremental Fuzzy CoCo bases its search power on a mechanism of incremental evolution
    corecore