357 research outputs found

    WDM optical network: Efficient techniques for fault-tolerant logic topology design

    Get PDF
    The rapid increase of bandwidth intensive applications has created an unprecedented demand for bandwidth on the Internet. With recent advances in optical technologies, especially the development of wavelength division multiplexing (WDM) techniques, the amount of raw bandwidth available on the fibre links has increased by several orders of magnitude. Due to the large volume of traffic these optical networks carry, there is one very important issue---design of robust networks that can survive faults. Two common mechanisms to protect against the network failure: one is protection and another is restoration. My research focuses on studying the efficient techniques for fault-tolerant logical topology design for the WDM optical network. In my research, the goal is to determine a topology that accommodates the entire traffic flow and provides protection against any single fiber failure. I solve the problem by formulating the logical topology design problem as a MILP optimization problem, which generates the optimum logical topology and the optimum traffic routing scheme. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .S54. Source: Masters Abstracts International, Volume: 43-01, page: 0244. Adviser: Arunita Jaekel. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Heuristic for the design of fault tolerant logical topology.

    Get PDF
    Wavelength division multiplexing (WDM) in optical fiber networks is widely viewed as the savior for its potential to satisfy the huge bandwidth requirement of network users. Optical cross connect (OCX) in WDM network facilitates the switching of signal on any wavelength from any input port to any output port. As a result, it is possible to establish ligthpaths between any pair of nodes. The set of lightpaths established over fiber links defines logical topology. In our thesis, we proposed a heuristic approach for the design of fault tolerant logical topology. Our design approach generalizes the design protection concept and enforces wavelength continuity constraint in a multi-hop optical network. In our work, we first designed logical topology for fault free state of the network. We, then, added additional lightpaths for each single link failure scenario. Numerical results clearly show that our approach outperforms Shared path protection and Dedicated path protection. Our simulation result shows that our approach is feasible for large networks. (Abstract shortened by UMI.) Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .S24. Source: Masters Abstracts International, Volume: 44-03, page: 1413. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Protection and restoration algorithms for WDM optical networks

    Get PDF
    Currently, Wavelength Division Multiplexing (WDM) optical networks play a major role in supporting the outbreak in demand for high bandwidth networks driven by the Internet. It can be a catastrophe to millions of users if a single optical fiber is somehow cut off from the network, and there is no protection in the design of the logical topology for a restorative mechanism. Many protection and restoration algorithms are needed to prevent, reroute, and/or reconfigure the network from damages in such a situation. In the past few years, many works dealing with these issues have been reported. Those algorithms can be implemented in many ways with several different objective functions such as a minimization of protection path lengths, a minimization of restoration times, a maximization of restored bandwidths, etc. This thesis investigates, analyzes and compares the algorithms that are mainly aimed to guarantee or maximize the amount of remaining bandwidth still working over a damaged network. The parameters considered in this thesis are the routing computation and implementation mechanism, routing characteristics, recovering computation timing, network capacity assignment, and implementing layer. Performance analysis in terms of the restoration efficiency, the hop length, the percentage of bandwidth guaranteed, the network capacity utilization, and the blocking probability is conducted and evaluated

    Some studies on the multi-mesh architecture.

    Get PDF
    In this thesis, we have reported our investigations on interconnection network architectures based on the idea of a recently proposed multi-processor architecture, Multi-Mesh network. This includes the development of a new interconnection architecture, study of its topological properties and a proposal for implementing Multi-Mesh using optical technology. We have presented a new network topology, called the 3D Multi-Mesh (3D MM) that is an extension of the Multi-Mesh architecture [DDS99]. This network consists of n3 three-dimensional meshes (termed as 3D blocks), each having n3 processors, interconnected in a suitable manner so that the resulting topology is 6-regular with n6 processors and a diameter of only 3n. We have shown that the connectivity of this network is 6. We have explored an algorithm for point-to-point communication on the 3D MM. It is expected that this architecture will enable more efficient algorithm mapping compared to existing architectures. We have also proposed some implementation of the multi-mesh avoiding the electronic bottleneck due to long copper wires for communication between some processors. Our implementation considers a number of realistic scenarios based on hybrid (optical and electronic) communication. One unique feature of this investigation is our use of WDM wavelength routing and the protection scheme. We are not aware of any implementation of interconnection networks using these techniques.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .A32. Source: Masters Abstracts International, Volume: 43-03, page: 0868. Adviser: Subir Bandyopadhyay. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Priority based dynamic lightpath allocation in WDM networks.

    Get PDF
    Internet development generates new bandwidth requirement every day. Optical networks employing WDM (wavelength division multiplexing) technology can provide high capacity, low error rate and low delay. They are considered to be future backbone networks. Since WDM networks usually operate in a high speed, network failure (such as fiber cut), even for a short term, can cause huge data lost. So design robust WDM network to survive faults is a crucial issue in WDM networks. This thesis introduces a new and efficient MILP (Mixed Integer Linear Programming) formulation to solve dynamic lightpath allocation problem in survivable WDM networks, using both shared and dedicated path protection. The formulation defines multiple levels of service to further improve resource utilization. Dijkstra\u27s shortest path algorithm is used to pre-compute up to 3 alternative routes between any node pair, so as to limit the lightpath routing problem within up to 3 routes instead of whole network-wide. This way can shorten the solution time of MILP formulation; make it acceptable for practical size network. Extensive experiments carried out on a number of networks show this new MILP formulation can improve performance and is feasible for real-life network. Source: Masters Abstracts International, Volume: 43-01, page: 0249. Adviser: Arunita Jaekel. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Network-on-Chip

    Get PDF
    Limitations of bus-based interconnections related to scalability, latency, bandwidth, and power consumption for supporting the related huge number of on-chip resources result in a communication bottleneck. These challenges can be efficiently addressed with the implementation of a network-on-chip (NoC) system. This book gives a detailed analysis of various on-chip communication architectures and covers different areas of NoCs such as potentials, architecture, technical challenges, optimization, design explorations, and research directions. In addition, it discusses current and future trends that could make an impactful and meaningful contribution to the research and design of on-chip communications and NoC systems

    Real-Time Energy Price-Aware Anycast RWA for Scheduled Lightpath Demands in Optical Data Center Networks

    Get PDF
    The energy consumption of the data center networks and the power consumption associated with transporting data to the users is considerably large, and it constitutes a significant portion of their costs. Hence, development of energy efficient schemes is very crucial to address this problem. Our research considers the fixed window traffic allocation model and the anycast routing scheme to select the best option for the destination node. Proper routing schemes and appropriate combination of the replicas can take care of the issue for energy utilization and at the same time help diminish costs for the data centers. We have also considered the real-time pricing model (which considers price changes every hour) to select routes for the lightpaths. Hence, we propose an ILP to handle the energyaware routing and wavelength assignment (RWA) problem for fixed window scheduled traffic model, with an objective to minimize the overall electricity costs of a datacenter network by reducing the actual power consumption, and using low-cost resources whenever possible

    IP Restoration vs. WDM Protection: Is There an Optimal choice?

    Get PDF

    Resilient network design: Challenges and future directions

    Get PDF
    This paper highlights the complexity and challenges of providing reliable services in the evolving communications infrastructure. The hurdles in providing end-to-end availability guarantees are discussed and research problems identified. Avenues for overcoming some of the challenges examined are presented. This includes the use of a highly available network spine embedded in a physical network together with efficient crosslayer mapping to offer survivability and differentiation of traffic into classes of resilience. © 2013 Springer Science+Business Media New York
    corecore