66 research outputs found

    Electronic systems for the restoration of the sense of touch in upper limb prosthetics

    Get PDF
    In the last few years, research on active prosthetics for upper limbs focused on improving the human functionalities and the control. New methods have been proposed for measuring the user muscle activity and translating it into the prosthesis control commands. Developing the feed-forward interface so that the prosthesis better follows the intention of the user is an important step towards improving the quality of life of people with limb amputation. However, prosthesis users can neither feel if something or someone is touching them over the prosthesis and nor perceive the temperature or roughness of objects. Prosthesis users are helped by looking at an object, but they cannot detect anything otherwise. Their sight gives them most information. Therefore, to foster the prosthesis embodiment and utility, it is necessary to have a prosthetic system that not only responds to the control signals provided by the user, but also transmits back to the user the information about the current state of the prosthesis. This thesis presents an electronic skin system to close the loop in prostheses towards the restoration of the sense of touch in prosthesis users. The proposed electronic skin system inlcudes an advanced distributed sensing (electronic skin), a system for (i) signal conditioning, (ii) data acquisition, and (iii) data processing, and a stimulation system. The idea is to integrate all these components into a myoelectric prosthesis. Embedding the electronic system and the sensing materials is a critical issue on the way of development of new prostheses. In particular, processing the data, originated from the electronic skin, into low- or high-level information is the key issue to be addressed by the embedded electronic system. Recently, it has been proved that the Machine Learning is a promising approach in processing tactile sensors information. Many studies have been shown the Machine Learning eectiveness in the classication of input touch modalities.More specically, this thesis is focused on the stimulation system, allowing the communication of a mechanical interaction from the electronic skin to prosthesis users, and the dedicated implementation of algorithms for processing tactile data originating from the electronic skin. On system level, the thesis provides design of the experimental setup, experimental protocol, and of algorithms to process tactile data. On architectural level, the thesis proposes a design ow for the implementation of digital circuits for both FPGA and integrated circuits, and techniques for the power management of embedded systems for Machine Learning algorithms

    Human-Machine Interfaces using Distributed Sensing and Stimulation Systems

    Get PDF
    As the technology moves towards more natural human-machine interfaces (e.g. bionic limbs, teleoperation, virtual reality), it is necessary to develop a sensory feedback system in order to foster embodiment and achieve better immersion in the control system. Contemporary feedback interfaces presented in research use few sensors and stimulation units to feedback at most two discrete feedback variables (e.g. grasping force and aperture), whereas the human sense of touch relies on a distributed network of mechanoreceptors providing a wide bandwidth of information. To provide this type of feedback, it is necessary to develop a distributed sensing system that could extract a wide range of information during the interaction between the robot and the environment. In addition, a distributed feedback interface is needed to deliver such information to the user. This thesis proposes the development of a distributed sensing system (e-skin) to acquire tactile sensation, a first integration of distributed sensing system on a robotic hand, the development of a sensory feedback system that compromises the distributed sensing system and a distributed stimulation system, and finally the implementation of deep learning methods for the classification of tactile data. It\u2019s core focus addresses the development and testing of a sensory feedback system, based on the latest distributed sensing and stimulation techniques. To this end, the thesis is comprised of two introductory chapters that describe the state of art in the field, the objectives, and the used methodology and contributions; as well as six studies that tackled the development of human-machine interfaces

    Embedded Electronic Systems for Electronic Skin Applications

    Get PDF
    The advances in sensor devices are potentially providing new solutions to many applications including prosthetics and robotics. Endowing upper limb prosthesis with tactile sensors (electronic/sensitive skin) can be used to provide tactile sensory feedback to the amputees. In this regard, the prosthetic device is meant to be equipped with tactile sensing system allowing the user limb to receive tactile feedback about objects and contact surfaces. Thus, embedding tactile sensing system is required for wearable sensors that should cover wide areas of the prosthetics. However, embedding sensing system involves set of challenges in terms of power consumption, data processing, real-time response and design scalability (e-skin may include large number of tactile sensors). The tactile sensing system is constituted of: (i) a tactile sensor array, (ii) an interface electronic circuit, (iii) an embedded processing unit, and (iv) a communication interface to transmit tactile data. The objective of the thesis is to develop an efficient embedded tactile sensing system targeting e-skin application (e.g. prosthetic) by: 1) developing a low power and miniaturized interface electronics circuit, operating in real-time; 2) proposing an efficient algorithm for embedded tactile data processing, affecting the system time latency and power consumption; 3) implementing an efficient communication channel/interface, suitable for large amount of data generated from large number of sensors. Most of the interface electronics for tactile sensing system proposed in the literature are composed of signal conditioning and commercial data acquisition devices (i.e. DAQ). However, these devices are bulky (PC-based) and thus not suitable for portable prosthetics from the size, power consumption and scalability point of view. Regarding the tactile data processing, some works have exploited machine learning methods for extracting meaningful information from tactile data. However, embedding these algorithms poses some challenges because of 1) the high amount of data to be processed significantly affecting the real time functionality, and 2) the complex processing tasks imposing burden in terms of power consumption. On the other hand, the literature shows lack in studies addressing data transfer in tactile sensing system. Thus, dealing with large number of sensors will pose challenges on the communication bandwidth and reliability. Therefore, this thesis exploits three approaches: 1) Developing a low power and miniaturized Interface Electronics (IE), capable of interfacing and acquiring signals from large number of tactile sensors in real-time. We developed a portable IE system based on a low power arm microcontroller and a DDC232 A/D converter, that handles an array of 32 tactile sensors. Upon touch applied to the sensors, the IE acquires and pre-process the sensor signals at low power consumption achieving a battery lifetime of about 22 hours. Then we assessed the functionality of the IE by carrying out Electrical and electromechanical characterization experiments to monitor the response of the interface electronics with PVDF-based piezoelectric sensors. The results of electrical and electromechanical tests validate the correct functionality of the proposed system. In addition, we implemented filtering methods on the IE that reduced the effect of noise in the system. Furthermore, we evaluated our proposed IE by integrating it in tactile sensory feedback system, showing effective deliver of tactile data to the user. The proposed system overcomes similar state of art solutions dealing with higher number of input channels and maintaining real time functionality. 2) Optimizing and implementing a tensorial-based machine learning algorithm for touch modality classification on embedded Zynq System-on-chip (SoC). The algorithm is based on Support Vector Machine classifier to discriminate between three input touch modality classes \u201cbrushing\u201d, \u201crolling\u201d and \u201csliding\u201d. We introduced an efficient algorithm minimizing the hardware implementation complexity in terms of number of operations and memory storage which directly affect time latency and power consumption. With respect to the original algorithm, the proposed approach \u2013 implemented on Zynq SoC \u2013 achieved reduction in the number of operations per inference from 545 M-ops to 18 M-ops and the memory storage from 52.2 KB to 1.7 KB. Moreover, the proposed method speeds up the inference time by a factor of 43 7 at a cost of only 2% loss in accuracy, enabling the algorithm to run on embedded processing unit and to extract tactile information in real-time. 3) Implementing a robust and efficient data transfer channel to transfer aggregated data at high transmission data rate and low power consumption. In this approach, we proposed and demonstrated a tactile sensory feedback system based on an optical communication link for prosthetic applications. The optical link features a low power and wide transmission bandwidth, which makes the feedback system suitable for large number of tactile sensors. The low power transmission is due to the employed UWB-based optical modulation. We implemented a system prototype, consisting of digital transmitter and receiver boards and acquisition circuits to interface 32 piezoelectric sensors. Then we evaluated the system performance by measuring, processing and transmitting data of the 32 piezoelectric sensors at 100 Mbps data rate through the optical link, at 50 pJ/bit communication energy consumption. Experimental results have validated the functionality and demonstrated the real time operation of the proposed sensory feedback system

    Touching on elements for a non-invasive sensory feedback system for use in a prosthetic hand

    Get PDF
    Hand amputation results in the loss of motor and sensory functions, impacting activities of daily life and quality of life. Commercially available prosthetic hands restore the motor function but lack sensory feedback, which is crucial to receive information about the prosthesis state in real-time when interacting with the external environment. As a supplement to the missing sensory feedback, the amputee needs to rely on visual and audio cues to operate the prosthetic hand, which can be mentally demanding. This thesis revolves around finding potential solutions to contribute to an intuitive non-invasive sensory feedback system that could be cognitively less burdensome and enhance the sense of embodiment (the feeling that an artificial limb belongs to one’s own body), increasing acceptance of wearing a prosthesis.A sensory feedback system contains sensors to detect signals applied to the prosthetics. The signals are encoded via signal processing to resemble the detected sensation delivered by actuators on the skin. There is a challenge in implementing commercial sensors in a prosthetic finger. Due to the prosthetic finger’s curvature and the fact that some prosthetic hands use a covering rubber glove, the sensor response would be inaccurate. This thesis shows that a pneumatic touch sensor integrated into a rubber glove eliminates these errors. This sensor provides a consistent reading independent of the incident angle of stimulus, has a sensitivity of 0.82 kPa/N, a hysteresis error of 2.39±0.17%, and a linearity error of 2.95±0.40%.For intuitive tactile stimulation, it has been suggested that the feedback stimulus should be modality-matched with the intention to provide a sensation that can be easily associated with the real touch on the prosthetic hand, e.g., pressure on the prosthetic finger should provide pressure on the residual limb. A stimulus should also be spatially matched (e.g., position, size, and shape). Electrotactile stimulation has the ability to provide various sensations due to it having several adjustable parameters. Therefore, this type of stimulus is a good candidate for discrimination of textures. A microphone can detect texture-elicited vibrations to be processed, and by varying, e.g., the median frequency of the electrical stimulation, the signal can be presented on the skin. Participants in a study using electrotactile feedback showed a median accuracy of 85% in differentiating between four textures.During active exploration, electrotactile and vibrotactile feedback provide spatially matched modality stimulations, providing continuous feedback and providing a displaced sensation or a sensation dispatched on a larger area. Evaluating commonly used stimulation modalities using the Rubber Hand Illusion, modalities which resemble the intended sensation provide a more vivid illusion of ownership for the rubber hand.For a potentially more intuitive sensory feedback, the stimulation can be somatotopically matched, where the stimulus is experienced as being applied on a site corresponding to their missing hand. This is possible for amputees who experience referred sensation on their residual stump. However, not all amputees experience referred sensations. Nonetheless, after a structured training period, it is possible to learn to associate touch with specific fingers, and the effect persisted after two weeks. This effect was evaluated on participants with intact limbs, so it remains to evaluate this effect for amputees.In conclusion, this thesis proposes suggestions on sensory feedback systems that could be helpful in future prosthetic hands to (1) reduce their complexity and (2) enhance the sense of body ownership to enhance the overall sense of embodiment as an addition to an intuitive control system

    A Refreshable and Portable E-Braille System for the Blind and Visually Impaired

    Full text link
    The objective of this research is to design an affordable Braille tactile display that is wearable, refreshable, and portable. The device is intended to be used as an output device that can playback stored media. It can be also incorporated with current Braille reading technologies. The device will control both the electrical and mechanical stimulations to optimize the sensation and ensure extended use of the device. This work is concerned mainly with the mechanical aspects of the design. This research proposed the development of a finger-wearable, scanning-style electric stimulation based (electrotactile) Braille display with sensing and adaptive rendering/actuation functions for assisting the BVI. E-Braille technology will allow the BVI to perform important tasks such as reading, writing, typing in Braille, printing text, browsing the Internet, engaging in on-line conversations, and perceiving graphics. Combined with the Cyber-Infrastructure network technology, E-Braille will allow the BVI to access more text, books and libraries anytime and anywhere. Additionally, the proposed E-Braille will provide a tool for collaborative research in the biomedical field involving psychophysicists, neurocytologists, electrochemists, and cognitive scientists. E-Braille will fill a gap in portable and adaptive seeing rehabilitation technology by providing the BVI with a fast, refreshable, and individualized electronic Braille tactile display. The proposed E-Braille system will dramatically enhance the lives of millions of the BVI by providing them with unprecedented access to information and communication at an affordable price and using the state-of-the-art sensing technology

    Automatic hand phantom map generation and detection using decomposition support vector machines

    Get PDF
    Background: There is a need for providing sensory feedback for myoelectric prosthesis users. Providing tactile feedback can improve object manipulation abilities, enhance the perceptual embodiment of myoelectric prostheses and help reduce phantom limb pain. Many amputees have referred sensation from their missing hand on their residual limbs (phantom maps). This skin area can serve as a target for providing amputees with non-invasive tactile sensory feedback. One of the challenges of providing sensory feedback on the phantom map is to define the accurate boundary of each phantom digit because the phantom map distribution varies from person to person. Methods: In this paper, automatic phantom map detection methods based on four decomposition support vector machine algorithms and three sampling methods are proposed, complemented by fuzzy logic and active learning strategies. The algorithms and methods are tested on two databases: the first one includes 400 generated phantom maps, whereby the phantom map generation algorithm was based on our observation of the phantom maps to ensure smooth phantom digit edges, variety, and representativeness. The second database includes five reported phantom map images and transformations thereof. The accuracy and training/ classification time of each algorithm using a dense stimulation array (with 100 ×\times × 100 actuators) and two coarse stimulation arrays (with 3 ×\times × 5 and 4 ×\times × 6 actuators) are presented and compared. Results: Both generated and reported phantom map images share the same trends. Majority-pooling sampling effectively increases the training size, albeit introducing some noise, and thus produces the smallest error rates among the three proposed sampling methods. For different decomposition architectures, one-vs-one reduces unclassified regions and in general has higher classification accuracy than the other architectures. By introducing fuzzy logic to bias the penalty parameter, the influence of pooling-induced noise is reduced. Moreover, active learning with different strategies was also tested and shown to improve the accuracy by introducing more representative training samples. Overall, dense arrays employing one-vs-one fuzzy support vector machines with majority-pooling sampling have the smallest average absolute error rate (8.78% for generated phantom maps and 11.5% for reported and transformed phantom map images). The detection accuracy of coarse arrays was found to be significantly lower than for dense array. Conclusions: The results demonstrate the effectiveness of support vector machines using a dense array in detecting refined phantom map shapes, whereas coarse arrays are unsuitable for this task. We therefore propose a two-step approach, using first a non-wearable dense array to detect an accurate phantom map shape, then to apply a wearable coarse stimulation array customized according to the detection results. The proposed methodology can be used as a tool for helping haptic feedback designers and for tracking the evolvement of phantom maps

    Prosthetic Control and Sensory Feedback for Upper Limb Amputees

    Get PDF
    Hand amputation could dramatically degrade the life quality of amputees. Many amputees use prostheses to restore part of the hand functions. Myoelectric prosthesis provides the most dexterous control. However, they are facing high rejection rate. One of the reasons is the lack of sensory feedback. There is a need for providing sensory feedback for myoelectric prosthesis users. It can improve object manipulation abilities, enhance the perceptual embodiment of myoelectric prostheses and help reduce phantom limb pain. This PhD work focuses on building bi-directional prostheses for upper limb amputees. In the introduction chapter, first, an overview of upper limb amputee demographics and upper limb prosthesis is given. Then the human somatosensory system is briefly introduced. The next part reviews invasive and non-invasive sensory feedback methods reported in the literature. The rest of the chapter describes the motivation of the project and the thesis organization. The first step to build a bi-directional prostheses is to investigate natural and robust multifunctional prosthetic control. Most of the commerical prostheses apply non-pattern recognition based myoelectric control methods, which offers only limited functionalities. In this thesis work, pattern recognition based prosthetic control employing three commonly used and representative machine learning algorithms is investigated. Three datasets involving different levels of upper arm movements are used for testing the algorithm effectiveness. The influence of time-domain features, window and increment sizes, algorithms, and post-processing techniques are analyzed and discussed. The next three chapters address different aspects of providing sensory feedback. The first focus of sensory feedback process is the automatic phantom map detection. Many amputees have referred sensation from their missing hand on their residual limbs (phantom maps). This skin area can serve as a target for providing amputees with non-invasive tactile sensory feedback. One of the challenges of providing sensory feedback on the phantom map is to define the accurate boundary of each phantom digit because the phantom map distribution varies from person to person. Automatic phantom map detection methods based on four decomposition support vector machine algorithms and three sampling methods are proposed. The accuracy and training/ classification time of each algorithm using a dense stimulation array and two coarse stimulation arrays are presented and compared. The next focus of the thesis is to develop non-invasive tactile display. The design and psychophysical testing results of three types of non-invasive tactile feedback arrays are presented: two with vibrotactile modality and one with multi modality. For vibrotactile, two types of miniaturized vibrators: eccentric rotating masses (ERMs) and linear resonant actuators (LRAs) were first tested on healthy subjects and their effectiveness was compared. Then the ERMs are integrated into a vibrotactile glove to assess the feasibility of providing sensory feedback for unilateral upper limb amputees on the contralateral hand. For multimodal stimulation, miniature multimodal actuators integrating servomotors and vibrators were designed. The actuator can be used to deliver both high-frequency vibration and low-frequency pressures simultaneously. By utilizing two modalities at the same time, the actuator stimulates different types of mechanoreceptors and thus h
    • 

    corecore