238 research outputs found

    A recurrent emotional CMAC neural network controller for vision-based mobile robots

    Get PDF
    Vision-based mobile robots often suffer from the difficulties of high nonlinear dynamics and precise positioning requirements, which leads to the development demand of more powerful nonlinear approximation in controlling and monitoring of mobile robots. This paper proposes a recurrent emotional cerebellar model articulation controller (RECMAC) neural network in meeting such demand. In particular, the proposed network integrates a recurrent loop and an emotional learning mechanism into a cerebellar model articulation controller (CMAC), which is implemented as the main component of the controller module of a vision-based mobile robot. Briefly, the controller module consists of a sliding surface, the RECMAC, and a compensator controller. The incorporation of the recurrent structure in a slide model neural network controller ensures the retaining of the previous states of the robot to improve its dynamic mapping ability. The convergence of the proposed system is guaranteed by applying the Lyapunov stability analysis theory. The proposed system was validated and evaluated by both simulation and a practical moving-target tracking task. The experimentation demonstrated that the proposed system outperforms other popular neural network-based control systems, and thus it is superior in approximating highly nonlinear dynamics in controlling vision-based mobile robots

    Navigational Path Analysis of Mobile Robot in Various Environments

    Get PDF
    This dissertation describes work in the area of an autonomous mobile robot. The objective is navigation of mobile robot in a real world dynamic environment avoiding structured and unstructured obstacles either they are static or dynamic. The shapes and position of obstacles are not known to robot prior to navigation. The mobile robot has sensory recognition of specific objects in the environments. This sensory-information provides local information of robots immediate surroundings to its controllers. The information is dealt intelligently by the robot to reach the global objective (the target). Navigational paths as well as time taken during navigation by the mobile robot can be expressed as an optimisation problem and thus can be analyzed and solved using AI techniques. The optimisation of path as well as time taken is based on the kinematic stability and the intelligence of the robot controller. A successful way of structuring the navigation task deals with the issues of individual behaviour design and action coordination of the behaviours. The navigation objective is addressed using fuzzy logic, neural network, adaptive neuro-fuzzy inference system and different other AI technique.The research also addresses distributed autonomous systems using multiple robot

    Self-organizing Brain Emotional Learning Controller Network for Intelligent Control System of Mobile Robots

    Get PDF
    The trajectory tracking ability of mobile robots suffers from uncertain disturbances. This paper proposes an adaptive control system consisting of a new type of self-organizing neural network controller for mobile robot control. The newly designed neural network contains the key mechanisms of a typical brain emotional learning controller network and a self-organizing radial basis function network. In this system, the input values are delivered to a sensory channel and an emotional channel; and the two channels interact with each other to generate the final outputs of the proposed network. The proposed network possesses the ability of online generation and elimination of fuzzy rules to achieve an optimal neural structure. The parameters of the proposed network are on-line tunable by the brain emotional learning rules and gradient descent method; in addition, the stability analysis theory is used to guarantee the convergence of the proposed controller. In the experimentation, a simulated mobile robot was applied to verify the feasibility and effectiveness of the proposed control system. The comparative study using the cutting-edge neural network-based control systems confirms the proposed network is capable of producing better control performances with high computational efficiency

    Navigation of Real Mobile Robot by Using Fuzzy Logic Technique

    Get PDF
    Now a day’s robots play an important role many applications like medical, industrial, military, transportation etc. navigation of mobile robot is the primary issue in now a days. Navigation is the process of detection and avoiding the obstacles in the path and to reach the destination by taking the surrounding information from the sensors. The successful navigation of mobile robot means reaching the destination in short distance in short period by avoiding the obstacles in the path. For this, we are using fuzzy logic technique for the navigation of mobile robot. In this project, we build up the four-wheel mobile robot and simulation and experimental results are carried out in the lab. Comparison between the simulation and experimental results are done and are found to be in good

    An Output-Recurrent-Neural-Network-Based Iterative Learning Control for Unknown Nonlinear Dynamic Plants

    Get PDF
    We present a design method for iterative learning control system by using an output recurrent neural network (ORNN). Two ORNNs are employed to design the learning control structure. The first ORNN, which is called the output recurrent neural controller (ORNC), is used as an iterative learning controller to achieve the learning control objective. To guarantee the convergence of learning error, some information of plant sensitivity is required to design a suitable adaptive law for the ORNC. Hence, a second ORNN, which is called the output recurrent neural identifier (ORNI), is used as an identifier to provide the required information. All the weights of ORNC and ORNI will be tuned during the control iteration and identification process, respectively, in order to achieve a desired learning performance. The adaptive laws for the weights of ORNC and ORNI and the analysis of learning performances are determined via a Lyapunov like analysis. It is shown that the identification error will asymptotically converge to zero and repetitive output tracking error will asymptotically converge to zero except the initial resetting error
    corecore