675 research outputs found

    Linear Phase FIR Digital Filter Design Using Differential Evolution Algorithms

    Get PDF
    Digital filter plays a vital part in digital signal processing field. It has been used in control systems, aerospace, telecommunications, medical applications, speech processing and so on. Digital filters can be divided into infinite impulse response filter (IIF) and finite impulse response filter (FIR). The advantage of FIR is that it can be linear phase using symmetric or anti-symmetry coefficients. Besides traditional methods like windowing function and frequency sampling, optimization methods can be used to design FIR filters. A common method for FIR filter design is to use the Parks-McClellan algorithm. Meanwhile, evolutional algorithm such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO) [2], and Differential Evolution (DE) have shown successes in solving multi-parameters optimization problems. This thesis reports a comparison work on the use of PSO, DE, and two modified DE algorithms from [18] and [19] for designing six types of linear phase FIR filters, consisting of type1 lowpass, highpass, bandpass, and bandstop filters, and type2 lowpass and bandpass filters. Although PSO has been applied in this field for some years, the results of some of the designs, especially for high-dimensional filters, are not good enough when comparing with those of the Parks-McClellan algorithm. DE algorithms use parallel search techniques to explore optimal solutions in a global range. What’s more, when facing higher dimensional filter design problems, through combining the knowledge acquired during the searching process, the DE algorithm shows obvious advantage in both frequency response and computational time

    Digital Filter Design Using Multiobjective Cuckoo Search Algorithm

    Get PDF
    Digital filters can be divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters. Evolutionary algorithms are effective techniques in digital filter designs. One such evolutionary algorithm is Cuckoo Search Algorithm (CSA). The CSA is a heuristic algorithm which emulates a special parasitic hatching habit of some species of cuckoos and have been proved to be an effective method with various applications. This thesis compares CSA with Park-McClellan algorithm on linear-phase FIR Type-1 lowpass, highpass, bandpass and bandstop digital filter design. Furthermore, a multiobjective Cuckoo Search Algorithm (MOCSA) is applied on general FIR digital design with a comparison to Non-dominated Sorting Genetic Algorithm III (NSGA-III). Finally, a constrained multiobjective Cuckoo Search Algorithm is presented and used for IIR digital filter design. The design results of the constrained MOCSA approach compares favorably with other state-of-the-art optimization methods. CSA utilizes Levy flight with wide-range step length for the global walk to assure reaching the global optimum and the approach of local walk to orientate the direction toward the local minima. Furthermore, MOCSA incorporates a method of Euclidean distance combing objective-based equilibrating operations and the searching for the optimal solution into one step and simplifies the procedure of comparison

    Adaptive non linear system identification and channel equalization usinf functional link artificial neural network

    Get PDF
    In system theory, characterization and identification are fundamental problems. When the plant behavior is completely unknown, it may be characterized using certain model and then, its identification may be carried out with some artificial neural networks(ANN) like multilayer perceptron(MLP) or functional link artificial neural network(FLANN) using some learning rules such as back propagation (BP) algorithm. They offer flexibility, adaptability and versatility, so that a variety of approaches may be used to meet a specific goal, depending upon the circumstances and the requirements of the design specifications. The primary aim of the present thesis is to provide a framework for the systematic design of adaptation laws for nonlinear system identification and channel equalization. While constructing an artificial neural network the designer is often faced with the problem of choosing a network of the right size for the task. The advantages of using a smaller neural network are cheaper cost of computation and better generalization ability. However, a network which is too small may never solve the problem, while a larger network may even have the advantage of a faster learning rate. Thus it makes sense to start with a large network and then reduce its size. For this reason a Genetic Algorithm (GA) based pruning strategy is reported. GA is based upon the process of natural selection and does not require error gradient statistics. As a consequence, a GA is able to find a global error minimum. Transmission bandwidth is one of the most precious resources in digital communication systems. Communication channels are usually modeled as band-limited linear finite impulse response (FIR) filters with low pass frequency response. When the amplitude and the envelope delay response are not constant within the bandwidth of the filter, the channel distorts the transmitted signal causing intersymbol interference (ISI). The addition of noise during propagation also degrades the quality of the received signal. All the signal processing methods used at the receiver's end to compensate the introduced channel distortion and recover the transmitted symbols are referred as channel equalization techniques.When the nonlinearity associated with the system or the channel is more the number of branches in FLANN increases even some cases give poor performance. To decrease the number of branches and increase the performance a two stage FLANN called cascaded FLANN (CFLANN) is proposed.This thesis presents a comprehensive study covering artificial neural network (ANN) implementation for nonlinear system identification and channel equalization. Three ANN structures, MLP, FLANN, CFLANN and their conventional gradient-descent training methods are extensively studied. Simulation results demonstrate that FLANN and CFLANN methods are directly applicable for a large class of nonlinear control systems and communication problems

    Evolvable hardware platform for fault-tolerant reconfigurable sensor electronics

    Get PDF

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest

    Diseño de filtros digitales FIR mediante técnicas de computación evolutiva y estudio de su aplicación al procesado de señales biomédicas

    Get PDF
    El diseño de filtros digitales eficientes es una rama esencial del procesado de señales. Los filtros FIR son empleados en numerosas aplicaciones debido a su naturaleza de fase lineal y estabilidad frecuencial. Los métodos de diseño tradicionales sufren el problema del escaso control sobre la respuesta en frecuencia del filtro diseñado. Por esto, en este documento, se presenta una técnica de optimización novedosa, denominada Algoritmo de Polinización de Flores (FPA), junto con una novedosa función de aptitud múltiple, para la obtención del filtro FIR deseado. El algoritmo FPA se basa en el proceso de polinización de las flores. Dadas las especificaciones del filtro FIR, el algoritmo FPA obtiene un conjunto de coeficientes óptimos del filtro que mejor se aproxima a las especificaciones ideales. Los resultados obtenidos se han comparado con los métodos tradicionales de enventanado y algoritmo Parks-MacClellan (PM) y con otros métodos algorítmicos. Estos resultados numéricos muestran la superioridad del método de computación natural (FPA), junto con la función de aptitud múltiple en el diseño de filtros FIR paso bajo, paso alto, paso banda y elimina banda. Concretamente: Se consigue un mejor ajuste a las especificaciones del filtro deseado, una mayor atenuación de la banda eliminada y menor ancho de banda de transición a costa de aumentar ligeramente el rizado en la banda de paso.Grado en Ingeniería de Tecnologías Específicas de Telecomunicació

    Who wrote this scientific text?

    No full text
    The IEEE bibliographic database contains a number of proven duplications with indication of the original paper(s) copied. This corpus is used to test a method for the detection of hidden intertextuality (commonly named "plagiarism"). The intertextual distance, combined with the sliding window and with various classification techniques, identifies these duplications with a very low risk of error. These experiments also show that several factors blur the identity of the scientific author, including variable group authorship and the high levels of intertextuality accepted, and sometimes desired, in scientific papers on the same topic

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Structure-Preserving Model Reduction of Physical Network Systems

    Get PDF
    This paper considers physical network systems where the energy storage is naturally associated to the nodes of the graph, while the edges of the graph correspond to static couplings. The first sections deal with the linear case, covering examples such as mass-damper and hydraulic systems, which have a structure that is similar to symmetric consensus dynamics. The last section is concerned with a specific class of nonlinear physical network systems; namely detailed-balanced chemical reaction networks governed by mass action kinetics. In both cases, linear and nonlinear, the structure of the dynamics is similar, and is based on a weighted Laplacian matrix, together with an energy function capturing the energy storage at the nodes. We discuss two methods for structure-preserving model reduction. The first one is clustering; aggregating the nodes of the underlying graph to obtain a reduced graph. The second approach is based on neglecting the energy storage at some of the nodes, and subsequently eliminating those nodes (called Kron reduction).</p

    L'intertextualité dans les publications scientifiques

    No full text
    La base de données bibliographiques de l'IEEE contient un certain nombre de duplications avérées avec indication des originaux copiés. Ce corpus est utilisé pour tester une méthode d'attribution d'auteur. La combinaison de la distance intertextuelle avec la fenêtre glissante et diverses techniques de classification permet d'identifier ces duplications avec un risque d'erreur très faible. Cette expérience montre également que plusieurs facteurs brouillent l'identité de l'auteur scientifique, notamment des collectifs de chercheurs à géométrie variable et une forte dose d'intertextualité acceptée voire recherchée
    corecore