3,444 research outputs found

    Push & Pull: autonomous deployment of mobile sensors for a complete coverage

    Full text link
    Mobile sensor networks are important for several strategic applications devoted to monitoring critical areas. In such hostile scenarios, sensors cannot be deployed manually and are either sent from a safe location or dropped from an aircraft. Mobile devices permit a dynamic deployment reconfiguration that improves the coverage in terms of completeness and uniformity. In this paper we propose a distributed algorithm for the autonomous deployment of mobile sensors called Push&Pull. According to our proposal, movement decisions are made by each sensor on the basis of locally available information and do not require any prior knowledge of the operating conditions or any manual tuning of key parameters. We formally prove that, when a sufficient number of sensors are available, our approach guarantees a complete and uniform coverage. Furthermore, we demonstrate that the algorithm execution always terminates preventing movement oscillations. Numerous simulations show that our algorithm reaches a complete coverage within reasonable time with moderate energy consumption, even when the target area has irregular shapes. Performance comparisons between Push&Pull and one of the most acknowledged algorithms show how the former one can efficiently reach a more uniform and complete coverage under a wide range of working scenarios.Comment: Technical Report. This paper has been published on Wireless Networks, Springer. Animations and the complete code of the proposed algorithm are available for download at the address: http://www.dsi.uniroma1.it/~novella/mobile_sensors

    Design and Performance Analysis of Genetic Algorithms for Topology Control Problems

    Full text link
    In this dissertation, we present a bio-inspired decentralized topology control mechanism, called force-based genetic algorithm (FGA), where a genetic algorithm (GA) is run by each autonomous mobile node to achieve a uniform spread of mobile nodes and to provide a fully connected network over an unknown area. We present a formal analysis of FGA in terms of convergence speed, uniformity at area coverage, and Lyapunov stability theorem. This dissertation emphasizes the use of mobile nodes to achieve a uniform distribution over an unknown terrain without a priori information and a central control unit. In contrast, each mobile node running our FGA has to make its own movement direction and speed decisions based on local neighborhood information, such as obstacles and the number of neighbors, without a centralized control unit or global knowledge. We have implemented simulation software in Java and developed four different testbeds to study the effectiveness of different GA-based topology control frameworks for network performance metrics including node density, speed, and the number of generations that GAs run. The stochastic behavior of FGA, like all GA-based approaches, makes it difficult to analyze its convergence speed. We built metrically transitive homogeneous and inhomogeneous Markov chain models to analyze the convergence of our FGA with respect to the communication ranges of mobile nodes and the total number of nodes in the system. The Dobrushin contraction coefficient of ergodicity is used for measuring convergence speed for homogeneous and inhomogeneous Markov chain models of our FGA. Furthermore, convergence characteristic analysis helps us to choose the nearoptimal values for communication range, the number of mobile nodes, and the mean node degree before sending autonomous mobile nodes to any mission. Our analytical and experimental results show that our FGA delivers promising results for uniform mobile node distribution over unknown terrains. Since our FGA adapts to local environment rapidly and does not require global network knowledge, it can be used as a real-time topology controller for commercial and military applications

    Coverage Hole Recovery Algorithm Based on Molecule Model in Heterogeneous WSNs

    Get PDF
    In diverse application fields, the increasing requisitions of Wireless Sensor Networks (WSNs) have more and more research dedicated to the question of sensor nodes’ deployment in recent years. For deployment of sensor nodes, some key points that should be taken into consideration are the coverage area to be monitored, energy consumed of nodes, connectivity, amount of deployed sensors and lifetime of the WSNs. This paper analyzes the wireless sensor network nodes deployment optimization problem. Wireless sensor nodes deployment determines the nodes’ capability and lifetime. For node deployment in heterogeneous sensor networks based on different probability sensing models of heterogeneous nodes, the author refers to the organic small molecule model and proposes a molecule sensing model of heterogeneous nodes in this paper. DSmT is an extension of the classical theory of evidence, which can combine with any type of trust function of an independent source, mainly concentrating on combined uncertainty, high conflict, and inaccurate source of evidence. Referring to the data fusion model, the changes in the network coverage ratio after using the new sensing model and data fusion algorithm are studied. According to the research results, the nodes deployment scheme of heterogeneous sensor networks based on the organic small molecule model is proposed in this paper. The simulation model is established by MATLAB software. The simulation results show that the effectiveness of the algorithm, the network coverage, and detection efficiency of nodes are improved, the lifetime of the network is prolonged, energy consumption and the number of deployment nodes are reduced, and the scope of perceiving is expanded. As a result, the coverage hole recovery algorithm can improve the detection performance of the network in the initial deployment phase and coverage hole recovery phase

    VBCA: A Virtual Forces Clustering Algorithm for Autonomous Aerial Drone Systems

    Get PDF
    We consider the positioning problem of aerial drone systems for efficient three-dimensional (3-D) coverage. Our solution draws from molecular geometry, where forces among electron pairs surrounding a central atom arrange their positions. In this paper, we propose a 3-D clustering algorithm for autonomous positioning (VBCA) of aerial drone networks based on virtual forces. These virtual forces induce interactions among drones and structure the system topology. The advantages of our approach are that (1) virtual forces enable drones to self-organize the positioning process and (2) VBCA can be implemented entirely localized. Extensive simulations show that our virtual forces clustering approach produces scalable 3-D topologies exhibiting near-optimal volume coverage. VBCA triggers efficient topology rearrangement for an altering number of nodes, while providing network connectivity to the central drone. We also draw a comparison of volume coverage achieved by VBCA against existing approaches and find VBCA up to 40% more efficient

    Connectivity, Coverage and Placement in Wireless Sensor Networks

    Get PDF
    Wireless communication between sensors allows the formation of flexible sensor networks, which can be deployed rapidly over wide or inaccessible areas. However, the need to gather data from all sensors in the network imposes constraints on the distances between sensors. This survey describes the state of the art in techniques for determining the minimum density and optimal locations of relay nodes and ordinary sensors to ensure connectivity, subject to various degrees of uncertainty in the locations of the nodes

    Facilitating Internet of Things on the Edge

    Get PDF
    The evolution of electronics and wireless technologies has entered a new era, the Internet of Things (IoT). Presently, IoT technologies influence the global market, bringing benefits in many areas, including healthcare, manufacturing, transportation, and entertainment. Modern IoT devices serve as a thin client with data processing performed in a remote computing node, such as a cloud server or a mobile edge compute unit. These computing units own significant resources that allow prompt data processing. The user experience for such an approach relies drastically on the availability and quality of the internet connection. In this case, if the internet connection is unavailable, the resulting operations of IoT applications can be completely disrupted. It is worth noting that emerging IoT applications are even more throughput demanding and latency-sensitive which makes communication networks a practical bottleneck for the service provisioning. This thesis aims to eliminate the limitations of wireless access, via the improvement of connectivity and throughput between the devices on the edge, as well as their network identification, which is fundamentally important for IoT service management. The introduction begins with a discussion on the emerging IoT applications and their demands. Subsequent chapters introduce scenarios of interest, describe the proposed solutions and provide selected performance evaluation results. Specifically, we start with research on the use of degraded memory chips for network identification of IoT devices as an alternative to conventional methods, such as IMEI; these methods are not vulnerable to tampering and cloning. Further, we introduce our contributions for improving connectivity and throughput among IoT devices on the edge in a case where the mobile network infrastructure is limited or totally unavailable. Finally, we conclude the introduction with a summary of the results achieved

    Digital Twin for Metasurface Reflector Management in 6G Terahertz Communications

    Get PDF
    The performance demands from data-intensive applications, such as multimedia streaming, as well as the growing number of devices connecting to the Internet, will increase the need for higher capacity wireless communication links. The research community has recently explored regions of the spectrum, including the Terahertz band (0.1 THz to 10 THz), that are underutilised for communications. THz frequencies come with a plethora of special challenges, one of which is the very narrow effective beam, thereby requiring a Line of Sight (LoS) between sender and receiver. Researchers have explored the use of reflectors that can redirect beams around blockages. In this paper, we propose a THz signal guidance system where a Digital Twin is used to model, predict and control the signal propagation characteristics of an indoor space. Our approach finds the best THz signal path from the base station to the mobile target via the tunable metamaterial walls, avoiding obstacles as needed, using geometric (ray tracing), path loss and Terahertz Potential Field (THzPF) models. With this knowledge, the digital twin guides the selection of antenna strips at a base station and the reflectors along the signal path. A top-view camera, with advanced image processing, provides context updates (obstacle and mobile target locations) to the digital twin. The image processing system also senses factors like water vapour concentration, and the material composition and surface roughness of obstacles. Such factors affect propagation strength, and the digital twin modifies the beam paths to adapt. Simulation results have shown the efficiency of our control system to maintain a reliable signal connection while minimising the use of antenna and reflector strips. Our system is the first proposal that maximises THz signal-to-noise ratio (SNR) through such a dynamic and robust control system, which integrates image processing of a room with base station configuration
    • …
    corecore