31 research outputs found

    Wideband DOA Estimation with Frequency Decomposition via a Unified GS-WSpSF Framework

    Get PDF
    A unified group sparsity based framework for wideband sparse spectrum fitting (GS-WSpSF) is proposed for wideband direction-of-arrival (DOA) estimation, which is capable of handling both uncorrelated and correlated sources. Then, by making four different assumptions on a priori knowledge about the sources, four variants under the proposed framework are formulated as solutions to the underdetermined DOA estimation problem without the need of employing sparse arrays. As verified by simulations, improved estimation performance can be achieved by the wideband methods compared with narrowband ones, and adopting more a priori information leads to better performance in terms of resolution capacity and estimation accuracy

    System Identification with Applications in Speech Enhancement

    No full text
    As the increasing popularity of integrating hands-free telephony on mobile portable devices and the rapid development of voice over internet protocol, identification of acoustic systems has become desirable for compensating distortions introduced to speech signals during transmission, and hence enhancing the speech quality. The objective of this research is to develop system identification algorithms for speech enhancement applications including network echo cancellation and speech dereverberation. A supervised adaptive algorithm for sparse system identification is developed for network echo cancellation. Based on the framework of selective-tap updating scheme on the normalized least mean squares algorithm, the MMax and sparse partial update tap-selection strategies are exploited in the frequency domain to achieve fast convergence performance with low computational complexity. Through demonstrating how the sparseness of the network impulse response varies in the transformed domain, the multidelay filtering structure is incorporated to reduce the algorithmic delay. Blind identification of SIMO acoustic systems for speech dereverberation in the presence of common zeros is then investigated. First, the problem of common zeros is defined and extended to include the presence of near-common zeros. Two clustering algorithms are developed to quantify the number of these zeros so as to facilitate the study of their effect on blind system identification and speech dereverberation. To mitigate such effect, two algorithms are developed where the two-stage algorithm based on channel decomposition identifies common and non-common zeros sequentially; and the forced spectral diversity approach combines spectral shaping filters and channel undermodelling for deriving a modified system that leads to an improved dereverberation performance. Additionally, a solution to the scale factor ambiguity problem in subband-based blind system identification is developed, which motivates further research on subbandbased dereverberation techniques. Comprehensive simulations and discussions demonstrate the effectiveness of the aforementioned algorithms. A discussion on possible directions of prospective research on system identification techniques concludes this thesis

    The Nested Periodic Subspaces: Extensions of Ramanujan Sums for Period Estimation

    Get PDF
    In the year 1918, the Indian mathematician Srinivasa Ramanujan proposed a set of sequences called Ramanujan Sums as bases to expand arithmetic functions in number theory. Today, exactly a 100 years later, we will show that these sequences re-emerge as exciting tools in a completely different context: For the extraction of periodic patterns in data. Combined with the state-of-the-art techniques of DSP, Ramanujan Sums can be used as the starting point for developing powerful algorithms for periodicity applications. The primary inspiration for this thesis comes from a recent extension of Ramanujan sums to subspaces known as the Ramanujan subspaces. These subspaces were designed to span any sequence with integer periodicity, and have many interesting properties. Starting with Ramanujan subspaces, this thesis first develops an entire family of such subspace representations for periodic sequences. This family, called Nested Periodic Subspaces due to their unique structure, turns out to be the least redundant sets of subspaces that can span periodic sequences. Three classes of new algorithms are proposed using the Nested Periodic Subspaces: dictionaries, filter banks, and eigen-space methods based on the auto-correlation matrix of the signal. It will be shown that these methods are especially advantageous to use when the data-length is short, or when the signal is a mixture of multiple hidden periods. The dictionary techniques were inspired by recent advances in sparsity based compressed sensing. Apart from the l1 norm based convex programs currently used in other applications, our dictionaries can admit l2 norm formulations that have linear and closed form solutions, even when the systems is under-determined. A new filter bank is also proposed using the Ramanujan sums. This, named the Ramanujan Filter Bank, can accurately track the instantaneous period for signals that exhibit time varying periodic nature. The filters in the Ramanujan Filter Bank have simple integer valued coefficients, and directly tile the period vs time plane, unlike classical STFT (Short Time Fourier Transform) and wavelets, which tile the time-frequency plane. The third family of techniques developed here are a generalization of the classic MUSIC (MUltiple SIgnal Classification) algorithm for periodic signals. MUSIC is one of the most popular techniques today for line spectral estimation. However, periodic signals are not just any unstructured line spectral signals. There is a nice harmonic spacing between the lines which is not exploited by plain MUSIC. We will show that one can design much more accurate adaptations of MUSIC using Nested Periodic Subspaces. Compared to prior variants of MUSIC for the periodicity problem, our approach is much faster and yields much more accurate results for signals with integer periods. This work is also the first extension of MUSIC that uses simple integer valued basis vectors instead of using traditional complex-exponentials to span the signal subspace. The advantages of the new methods are demonstrated both on simulations, as well as real world applications such as DNA micro-satellites, protein repeats and absence seizures. Apart from practical contributions, the theory of Nested Periodic Subspaces offers answers to a number of fundamental questions that were previously unanswered. For example, what is the minimum contiguous data-length needed to be able to identify the period of a signal unambiguously? Notice that the answer we seek is a fundamental identifiability bound independent of any particular period estimation technique. Surprisingly, this basic question has never been answered before. In this thesis, we will derive precise expressions for the minimum necessary and sufficient datalengths for this question. We also extend these bounds to the context of mixtures of periodic signals. Once again, even though mixtures of periodic signals often occur in many applications, aspects such as the unique identifiability of the component periods were never rigorously analyzed before. We will present such an analysis as well. While the above question deals with the minimum contiguous datalength required for period estimation, one may ask a slightly different question: If we are allowed to pick the samples of a signal in a non-contiguous fashion, how should we pick them so that we can estimate the period using the least number of samples? This question will be shown to be quite difficult to answer in general. In this thesis, we analyze a smaller case in this regard, namely, that of resolving between two periods. It will be shown that the analysis is quite involved even in this case, and the optimal sampling pattern takes an interesting form of sparsely located bunches. This result can also be extended to the case of multi-dimensional periodic signals. We very briefly address multi-dimensional periodicity in this thesis. Most prior DSP literature on multi-dimensional discrete time periodic signals assumes the period to be parallelepipeds. But as shown by the artist M. C. Escher, one can tile the space using a much more diverse variety of shapes. Is it always possible to account for such other periodic shapes using the traditional notion of parallelepiped periods? An interesting analysis in this regard is presented towards the end of the thesis.</p

    Residue Number Systems: a Survey

    Get PDF
    corecore