23,304 research outputs found

    Integral Control Design using the Implicit Lyapunov Function Approach

    Get PDF
    International audienceIn this paper, we design homogeneous integral controllers of arbitrary non positive homogeneity degree for a system in the normal form with matched uncer-tainty/perturbation. The controllers are able to reach finite-time convergence, rejecting matched constant (Lipschitz, in the discontinuous case) perturbations. For the design, we use the Implicit Lyapunov Function method combined with an explicit Lyapunov function for the addition of the integral term

    Sparse Wide-Area Control of Power Systems using Data-driven Reinforcement Learning

    Full text link
    In this paper we present an online wide-area oscillation damping control (WAC) design for uncertain models of power systems using ideas from reinforcement learning. We assume that the exact small-signal model of the power system at the onset of a contingency is not known to the operator and use the nominal model and online measurements of the generator states and control inputs to rapidly converge to a state-feedback controller that minimizes a given quadratic energy cost. However, unlike conventional linear quadratic regulators (LQR), we intend our controller to be sparse, so its implementation reduces the communication costs. We, therefore, employ the gradient support pursuit (GraSP) optimization algorithm to impose sparsity constraints on the control gain matrix during learning. The sparse controller is thereafter implemented using distributed communication. Using the IEEE 39-bus power system model with 1149 unknown parameters, it is demonstrated that the proposed learning method provides reliable LQR performance while the controller matched to the nominal model becomes unstable for severely uncertain systems.Comment: Submitted to IEEE ACC 2019. 8 pages, 4 figure
    corecore