309 research outputs found

    Aplikacije i adaptivna neuro-fuzzy logička procjena svojstva vodljivosti silikonske gume

    Get PDF
    The paper summarizes the results of investigations on the conductive silicone rubber as strain sensor and presents a segment of the project for developing the new principle of a universal gripper with adaptable shape morphing surfaces. An experimental investigation of the sensors subjected to different time-dependent strain histories is presented. To investigate the electrical properties, the resistance of silicone was measured during the mechanical tests. An adaptive neuro-fuzzy inference system (ANFIS) was used to approximate the correlation between these measured features of the material and to predict its unknown future behavior. ANFIS has unlimited approximation power to match any nonlinear function arbitrarily well on compact set and to predict a chaotic time series.U radu su sažeti rezultati istraživanja vodljive silikonske gume kao senzora naprezanja i predstavlja jedan segment projekta za razvoj novog principa univerzalnog stezanja s prilagodljivim oblikom površine. Prikazano je eksperimentalno istraživanje senzora podvrgnutog različitim naprezanjima ovisnim o vremenu. Kako bi se istražila električna svojstva, izmjerena je otpornost silikona tijekom mehaničkih testova. Adaptivni neuro-fuzzy logički sustav (ANFIS) korišten je za približno utvrđivanje korelacije između mjerenih obilježja tih materijala, te za predviđanje nepoznatog budućeg ponašanja materijala. ANFIS ima neograničenu moć zadovoljavajuće točnog procjenjivanja bilo koje nelinearne funkcije na kompaktnom skupu i sposobnost predviđanja kaotičnih vremenskih serija

    Tactile Sensing with Accelerometers in Prehensile Grippers for Robots

    Full text link
    This is the author’s version of a work that was accepted for publication in Mechatronics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Mechatronics, Vol. 33, (2016)] DOI 10.1016/j.mechatronics.2015.11.007.Several pneumatic grippers with accelerometers attached to their fingers have been developed and tested. The first gripper is able to classify the hardness of different cylinders, estimate the pneumatic pressure, monitor the position and speed of the gripper fingers, and study the phases of the action of grasping and the influence of the relative position between the gripper and the cylinders. The other grippers manipulate and assess the firmness of eggplants and mangoes. To achieve a gentle manipulation, the grippers employ fingers with several degrees of freedom in different configurations and have a membrane filled with a fluid that allows their hardness to be controlled by means of the jamming transition of the granular fluid inside it. To assess the firmness of eggplants and mangoes and avoid the influence of the relative position between product and gripper, the firmness is estimated while the products are being held by the fingers. Better performance of the accelerometers is achieved when the finger employs the granular fluid. The article presents methods for designing grippers capable of assessing the firmness of irregular products with accelerometers. At the same time, it also studies the possibilities that accelerometers, attached to different pneumatic robot gripper fingers, offer as tactile sensors. (C) 2015 Elsevier Ltd. All rights reserved.This research is supported by the MANI-DACSA project (Grant number RTA2012-00062-C04-02), which is partially funded by the Spanish Government (Ministerio de Economia y Competitividad.).Blanes Campos, C.; Mellado Arteche, M.; Beltrán Beltrán, P. (2016). Tactile Sensing with Accelerometers in Prehensile Grippers for Robots. Mechatronics. 33:1-12. https://doi.org/10.1016/j.mechatronics.2015.11.007S1123

    Bio-inspired soft robotic systems: Exploiting environmental interactions using embodied mechanics and sensory coordination

    Get PDF
    Despite the widespread development of highly intelligent robotic systems exhibiting great precision, reliability, and dexterity, robots remain incapable of performing basic manipulation tasks that humans take for granted. Manipulation in unstructured environments continues to be acknowledged as a significant challenge. Soft robotics, the use of less rigid materials in robots, has been proposed as one means of addressing these limitations. The technique enables more compliant interactions with the environment, allowing for increasingly adaptive behaviours better suited to more human-centric applications. Embodied intelligence is a biologically inspired concept in which intelligence is a function of the entire system, not only the controller or `brain'. This thesis focuses on the use of embodied intelligence for the development of soft robots, with a particular focus on how it can aid both perception and adaptability. Two main hypotheses are raised: first, that the mechanical design and fabrication of soft-rigid hybrid robots can enable increasingly environmentally adaptive behaviours, and second, that sensing materials and morphology can provide intelligence that assists perception through embodiment. A number of approaches and frameworks for the design and development of embodied systems are presented that address these hypotheses. It is shown how embodiment in soft sensor morphology can be used to perform localised processing and thereby distribute the intelligence over the body of a system. Specifically in soft robots, sensor morphology utilises the directional deformations created by interactions with the environment to aid in perception. Building on and formalising these ideas, a number of morphology-based frameworks are proposed for detecting different stimuli. The multifaceted role of materials in soft robots is demonstrated through the development of materials capable of both sensing and changes in material property. Such materials provide additional functionality beyond their integral scaffolding and static mechanical characteristics. In particular, an integrated material has been created exhibiting both sensing capabilities and also variable stiffness and `tack’ force, thereby enabling complex single-point grasping. To maximise the intelligence that can be gained through embodiment, a design approach to soft robots, `soft-rigid hybrid' design is introduced. This approach exploits passive behaviours and body dynamics to provide environmentally adaptive behaviours and sensing. It is leveraged by multi-material 3D printing techniques and novel approaches and frameworks for designing mechanical structures. The findings in this thesis demonstrate that an embodied approach to soft robotics provides capabilities and behaviours that are not currently otherwise achievable. Utilising the concept of `embodiment' results in softer robots with an embodied intelligence that aids perception and adaptive behaviours, and has the potential to bring the physical abilities of robots one step closer to those of animals and humans.EPSR

    複数の静電容量型柔軟触覚デバイスを用いた三軸力センサの開発

    Get PDF
    早大学位記番号:新7325早稲田大

    An Embedded, Multi-Modal Sensor System for Scalable Robotic and Prosthetic Hand Fingers

    Get PDF
    Grasping and manipulation with anthropomorphic robotic and prosthetic hands presents a scientific challenge regarding mechanical design, sensor system, and control. Apart from the mechanical design of such hands, embedding sensors needed for closed-loop control of grasping tasks remains a hard problem due to limited space and required high level of integration of different components. In this paper we present a scalable design model of artificial fingers, which combines mechanical design and embedded electronics with a sophisticated multi-modal sensor system consisting of sensors for sensing normal and shear force, distance, acceleration, temperature, and joint angles. The design is fully parametric, allowing automated scaling of the fingers to arbitrary dimensions in the human hand spectrum. To this end, the electronic parts are composed of interchangeable modules that facilitate the echanical scaling of the fingers and are fully enclosed by the mechanical parts of the finger. The resulting design model allows deriving freely scalable and multimodally sensorised fingers for robotic and prosthetic hands. Four physical demonstrators are assembled and tested to evaluate the approach

    Composite force sensing foot utilizing volumetric displacement of a hyperelastic polymer

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 65-67).In this thesis, I will describe the fabrication and characterization of a footpad based on an original principle of volumetric displacement sensing. It is intended for use in detecting ground contact forces in a running quadrupedal robot. The footpad is man- ufactured as a monolithic, composite structure composed of multi-graded polymers which are reinforced by glass fiber to increase durability and traction. The volumetric displacement sensing principle utilizes a hyperelastic gel-like pad with embedded magnets that are tracked with Hall-effect sensors. Normal and shear forces can be detected as contact with the ground which causes the gel-like pad to deform into rigid wells. This is all done without the need to expose the sensor. A one-time training process using an artificial neural network was used to relate the normal and shear forces with the volumetric displacement sensor output. The sensor was shown to pre- dict normal forces in the Z-axis up to 80N with a root mean squared error of 6.04% as well as the onset of shear in the X and Y-axis. This demonstrates a proof-of-concept for a more robust footpad sensor suitable for use in all outdoor conditions.by Meng Yee (Michael) Chuah.S.M
    corecore