162 research outputs found

    Wireless Communication in Process Control Loop: Requirements Analysis, Industry Practices and Experimental Evaluation

    Get PDF
    Wireless communication is already used in process automation for process monitoring. The next stage of implementation of wireless technology in industrial applications is for process control. The need for wireless networked control systems has evolved because of the necessity for extensibility, mobility, modularity, fast deployment, and reduced installation and maintenance cost. These benefits are only applicable given that the wireless network of choice can meet the strict requirements of process control applications, such as latency. In this regard, this paper is an effort towards identifying current industry practices related to implementing process control over a wireless link and evaluates the suitability of ISA100.11a network for use in process control through experiments

    Economic Analysis of Variable Speed Drive Control Through Profinet Technology on Distributed Control System: A Case Study in Essential Oil Processing Factories

    Get PDF
    Electrical equipment in essential oil processing plants is generally dominated by electric motor loads. In today's digital era, global competition and technological advances encourage factories to increase the efficiency and reliability of their production equipment. One way of efficiency is to use a variable speed drive (VSD). The existence of Profinet technology as a network protocol between the control equipment and the VSD allows users to increase system reliability while increasing energy use efficiency. Even so, there are still many factories that are hesitant to use this technology in their automation systems. Many low to medium-sized factories still use traditional control methods such as hardwired. This method is considered more reliable, and inexpensive compared to using Profinet technology. Cost-benefit analysis is carried out to prove this paradigm. At the same time provides certainty that the investment costs incurred in building the system provide added value for production equipment. From this research, it is proven that the use of Profinet technology in addition to providing savings on investment costs also provides benefits from a technical perspective. This technology also allows the implementation of condition-based monitoring systems for electric motors in production equipment. Which in turn can increase the performance and service life of the machine

    Evaluating the Resiliency of Industrial Internet of Things Process Control Using Protocol Agnostic Attacks

    Get PDF
    Improving and defending our nation\u27s critical infrastructure has been a challenge for quite some time. A malfunctioning or stoppage of any one of these systems could result in hazardous conditions on its supporting populace leading to widespread damage, injury, and even death. The protection of such systems has been mandated by the Office of the President of the United States of America in Presidential Policy Directive Order 21. Current research now focuses on securing and improving the management and efficiency of Industrial Control Systems (ICS). IIoT promises a solution in enhancement of efficiency in ICS. However, the presence of IIoT can be a security concern, forcing ICS processes to rely on network based devices for process management. In this research, the attack surface of a testbed is evaluated using protocol-agnostic attacks and the SANS ICS Cyber Kill Chain. This highlights the widening of ICS attack surface due to reliance on IIoT, but also provides a solution which demonstrates one technique an ICS can use to securely rely on IIoT

    Performance analysis of Ethernet Powerlink protocol: Application to a new lift system generation

    No full text
    International audienceTo ensure control, present lifts use the Controller Area Network (CAN) bus for transmitting commands between components. Although it is largely adopted in the industrial process, CAN is not able to guarantee a sufficient throughput to transmit multimedia data or to meet the requirements of some safety standards. In this paper, we present a transition case from electrical/electromechanical components to a networked control system. The main element we focus on in the lift system is the safety chain. We propose to build the lift communication system around real-time Ethernet for more efficiency, smartness and safety. Furthermore, the use of the openSAFETY protocol as a safety layer over the real-time Ethernet allows the achievement of the required Safety Integrity Level (SIL). This adopted solution should meet the adopted standard IEC 61508 requirements

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service
    • …
    corecore