47 research outputs found

    Control Of Nonh=holonomic Systems

    Get PDF
    Many real-world electrical and mechanical systems have velocity-dependent constraints in their dynamic models. For example, car-like robots, unmanned aerial vehicles, autonomous underwater vehicles and hopping robots, etc. Most of these systems can be transformed into a chained form, which is considered as a canonical form of these nonholonomic systems. Hence, study of chained systems ensure their wide applicability. This thesis studied the problem of continuous feed-back control of the chained systems while pursuing inverse optimality and exponential convergence rates, as well as the feed-back stabilization problem under input saturation constraints. These studies are based on global singularity-free state transformations and controls are synthesized from resulting linear systems. Then, the application of optimal motion planning and dynamic tracking control of nonholonomic autonomous underwater vehicles is considered. The obtained trajectories satisfy the boundary conditions and the vehicles\u27 kinematic model, hence it is smooth and feasible. A collision avoidance criteria is set up to handle the dynamic environments. The resulting controls are in closed forms and suitable for real-time implementations. Further, dynamic tracking controls are developed through the Lyapunov second method and back-stepping technique based on a NPS AUV II model. In what follows, the application of cooperative surveillance and formation control of a group of nonholonomic robots is investigated. A designing scheme is proposed to achieves a rigid formation along a circular trajectory or any arbitrary trajectories. The controllers are decentralized and are able to avoid internal and external collisions. Computer simulations are provided to verify the effectiveness of these designs

    Line-of-sight-stabilization and tracking control for inertial platforms

    Get PDF
    Nowadays, line of sight stabilization and tracking using inertially stabilized platforms (ISPs) are still challenging engineering problems. With a growing demand for high-precision applications, more involved control techniques are necessary to achieve better performance. In this work, kinematic and dynamic models for a three degrees-of-freedom ISP are presented. These models are based in the vehicle-manipulator system (VMS) framework for modeling of robot manipulators operating in a mobile base (vehicles). The dynamic model follows the Euler-Lagrange formulation and is implemented by numeric simulations using the iterative Newton-Euler method. Two distinct control strategies for both stabilization and tracking are proposed: (i) computed torque control and (ii) sliding mode control using the recent SuperTwisting Algorithm (STA) combined with a High-Order Sliding Mode Observer (HOSMO). Simulations using data from a simulated vessel allow us to compare the performance of the computed torque controllers with respect to the commonly used P-PI controller. Besides, the results obtained for the sliding mode controllers indicate that the Super-Twisting algorithm offers ideal robustness to the vehicle motion disturbances and also to parametric uncertainties, resulting in a stabilization precision of approximately 0,8 mrad.Hoje em dia, a estabilização e o rastreamento da linha de visada utilizando plataformas inerciais continuam a constituir desafiadores problemas de engenharia. Com a crescente demanda por aplicações de alta precisão, técnicas de controle complexas são necessárias para atingir melhor desempenho. Neste trabalho, modelos cinemáticos e dinâmicos para uma plataforma mecânica de estabilização inercial são apresentados. Tais modelos se baseiam no formalismo para sistemas veículo-manipulator para a modelagem de manipuladores robóticos operando em uma base móvel (veículo). O modelo dinâmico apresentado segue a formulação analítica de Euler-Lagrange e é implementado em simulações numéricas através do método iterativo de Newton-Euler. Duas estratégias de controle distintas para estabilização e rastreamento são propostas: (i) controle por torque-computado e (ii) controle por modos deslizantes utilizando o recente algoritmo Super-Twisting combinado com um observador baseado em modos deslizantes de alta ordem. Simulações utilizando dados de movimentação de um navio simulado permitem comparar o desempenho dos controladores por torque computado em relação a um tipo comum de controlador linear utilizado na literatura: o P-PI. Além disso, os resultados obtidos para o controle por modos deslizantes permitem concluir que o algoritmo Super-Twisting apresenta rejeição ideal a perturbações provenientes do movimento do veículo e também a incertezas paramétricas, resultando em precisão de estabilização de aproximadamente 0,8 mrad

    Cluster Space Gradient Contour Tracking for Mobile Multi-robot Systems

    Get PDF
    Multi-robot systems have the potential to exceed the performance of many existing robotic systems by taking advantage of the cluster’s redundancy, coverage and flexibility. These unique characteristics of multi-robot systems allow them to perform tasks such as distributed sensing, gradient climbing, and collaborative work more effectively than any single robot system. The purpose of this research was to augment the existing cluster space control technique in order to demonstrate effective gradient-based functionality, specifically, that of tracking gradient contours of specified concentration levels. To do this, we needed first to estimate the direction of the gradient and/or contour based on the real-time measurements made by sensors on the distributed robots, and second, to steer the cluster in the appropriate direction. Successful simulation, characterization, and experimental testing with the developed testbed have validated this approach. The controller enabled the cluster to sense and follow a contour-based trajectory in a parameter field using both a kayak cluster formation and also the land based Pioneer robots. The positive results of this research demonstrate the robustness of the cluster space control while using the contour following technique and suggest the possibility of further expansion with field applications

    A neural circuit for navigation inspired by C. elegans Chemotaxis

    Full text link
    We develop an artificial neural circuit for contour tracking and navigation inspired by the chemotaxis of the nematode Caenorhabditis elegans. In order to harness the computational advantages spiking neural networks promise over their non-spiking counterparts, we develop a network comprising 7-spiking neurons with non-plastic synapses which we show is extremely robust in tracking a range of concentrations. Our worm uses information regarding local temporal gradients in sodium chloride concentration to decide the instantaneous path for foraging, exploration and tracking. A key neuron pair in the C. elegans chemotaxis network is the ASEL & ASER neuron pair, which capture the gradient of concentration sensed by the worm in their graded membrane potentials. The primary sensory neurons for our network are a pair of artificial spiking neurons that function as gradient detectors whose design is adapted from a computational model of the ASE neuron pair in C. elegans. Simulations show that our worm is able to detect the set-point with approximately four times higher probability than the optimal memoryless Levy foraging model. We also show that our spiking neural network is much more efficient and noise-resilient while navigating and tracking a contour, as compared to an equivalent non-spiking network. We demonstrate that our model is extremely robust to noise and with slight modifications can be used for other practical applications such as obstacle avoidance. Our network model could also be extended for use in three-dimensional contour tracking or obstacle avoidance

    Optimal guidance and control of heterogeneous swarms for in-orbit self-assembly of large space structures: Algorithms and experiments

    Get PDF
    Satellite design has been harshly constrained by surviving entry into space though the majority of the satellite's lifetime exists in much calmer conditions. Significant study has recently gone into assembling satellites and space structures in-orbit. Several methods have been proposed involving an assembler robot or astronaut which puts the parts together, but in the interest of saving resources we believe that it is advantageous to make this process autonomous and robust by leveraging existing optimal guidance and control schemes for a self-assembling swarm. This approach avoids single-point failures, requires significantly less ground support, provides increased reliability due to redundancy, increased flexibility, the ability to reconfigure for future missions, and the ability to self-repair. Since the satellites required could be mass-produced from a small set of different component types, the benefit from economy of scale would reduce the overall mission cost when compared to monolithic satellites. This dissertation details an optimal guidance and control scheme to enable in-orbit self-assembly of a large structure from a heterogeneous swarm of satellites. In the proposed scheme, the component satellites for the heterogeneous swarm are chosen to promote flexibility in final shape inspired by crystal structures and Islamic tile art. After the ideal fundamental building blocks are selected, basic nanosatellite-class satellite designs are presented to enable accurate attitude control simulations. The Swarm Orbital Construction Algorithm (SOCA) is a guidance and control algorithm that allows for the limited type heterogeneity and docking ability required for in-orbit assembly. The algorithm was tested in a simulated perturbed 6-DOF spacecraft dynamic environment for planar and out-of-plane final structures. The algorithm is then experimentally validated coarsely on omnidirectional wheeled robots and precisely on-board the M-STAR robots in the precision flat floor facility in the Caltech Aerospace Robotics and Control lab, the largest of its kind at any university. In support of this effort, a better way of handling nonlinear dynamics constraints within sequential convex programs was developed. SCP is a useful tool in obtaining real-time solutions to direct optimal control, but it is unable to adequately model nonlinear dynamics due to the linearization and discretization required. As nonlinear program solvers are not yet functioning in real-time, a tool is needed to bridge the gap between satisfying the nonlinear dynamics and completing execution fast enough to be useful. Two methods are proposed, sequential convex programming with nonlinear dynamics correction (SCPn) and modified SCPn (M-SCPn), which mixes SCP and SCPn to reduce runtime and improve algorithmic robustness. Both methods are proven to generate optimal state and control trajectories that satisfy the nonlinear dynamics. Simulations are presented to validate the efficacy of the methods as compared to SCP. In addition, several autonomous rendezvous and docking (AR&D) technologies were studied because in-orbit self-assembly requires repeated, reliable autonomous docking to ensure success. Docking small satellites in space is a high-risk operation due to the uncertainty in relative position and orientation and the lack of mature docking technologies. This is particularly true for missions that involve multiple docking and undocking procedures like swarm-based construction and reconfiguration. A tether-based docking system was evaluated in simulation as compared to traditional propulsive methods. The tether-based method provides a way to reduce the risk of the dock, since the docking maneuver is performed with a much smaller satellite and the reeling maneuver can be done gently. Tether-based methods still require some actuation on the docking end of the tether, and propulsion on such small systems is inexact. An electromagnetic docking system was investigated to address these issues. Designed with reconfigurable self-assembly in mind, the gripping mechanism is androgynous, able to dock at a variety of relative orientations, and tolerant of small misalignments. The electromagnetic system can be used either on the end of a tether or on the main spacecraft itself since the electromagnet is well controlled and the measurement of the ambient electromagnetic field can be used as to improve the intersatellite distance estimate enough to reduce the risk of docking to the main spacecraft. The performance of this system was validated experimentally on-board the M-STARs. The performance of the electromagnetic docking system on-board the simulators is then compared against a propulsive docking system tested in the same way. Overall, this dissertation provides optimal guidance and control algorithms for nonlinear systems to enable in-orbit self-assembly of heterogeneous swarms

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    NASA Tech Briefs, September 1990

    Get PDF
    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences
    corecore